
BIRZEIT UNIVERSITY

Master Thesis

React Native Testing: Pruning GUI Model

Approach

Author:

Rand Ibrahim (1195280)

Supervisor:

Dr. Samer Zein

This Thesis was submitted in partial fulfillment of the requirements for the Master’s Degree

in Software Engineering from the Faculty of Graduate Studies at Birzeit University,

Palestine

May 17, 2023

https://birzeit.edu

Acknowledgements
First and foremost I am extremely grateful to my supervisor, Dr.Samer Zein for his continuous

support, and patience during my master thesis preparation. His immense knowledge and

advises have encouraged me all the time. I would also like to thank the volunteers that

helped me in evaluating the framework. Finally, I would like to express my gratitude to my

family, my husband and my friends for their tremendous understanding and encouragement

in the past few months.

Contents

Acknowledgements ii

Abstract ix

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 3

1.3 Research Problem . 4

1.4 Research Questions . 5

1.5 Report Structure . 5

2 Background 6

2.1 Overview . 6

2.2 Cross-platform Development . 6

2.2.1 React native . 7

2.3 Model-Based Testing . 10

2.4 Code analysis . 12

2.4.1 Static Analysis . 13

Abstract Syntax Tree (AST) . 14

2.4.2 Dynamic analysis . 15

3 Literature Review 16

3.1 Overview . 16

3.2 Search Method . 16

3.2.1 Search Key wording . 17

3.2.2 Source Databases . 17

3.2.3 Selection Criteria . 17

3.3 Automatic Model-Based Testing . 18

3.4 GUI Models Maintenance . 28

3.5 Summary . 30

4 Methodology 32

4.1 Overview . 32

4.2 Solution Approach . 32

4.2.1 GUI modeling and representation . 34

4.2.2 Parse the code, detect the JSX elements & prune the AST 35

4.2.3 Comparing the JSXElements tree of the original and updated source code 40

4.2.4 Building the different paths of the dependency graph 44

4.3 Code Implementation Strategies . 46

4.3.1 Modularization . 46

4.4 Evaluation . 47

4.4.1 Application Under Test . 48

4.4.2 Experiment Setup and Procedure . 52

Participants . 52

Experiment Steps . 53

Participants Experiments . 54

Participants #1 & #2 . 54

Participant #3 . 55

Participant #4 . 55

Participant #5 . 56

Participant #6 . 57

The Questionnaire . 58

Time Efficiency . 58

5 Results and Discussion 61

5.1 Measurement Results . 61

5.2 Discussion . 66

5.2.1 How effective is the build framework in detecting changes and results

that satisfy the test engineers? . 66

5.2.2 How to detect the GUI elements and prune the GUI model? 67

iv

5.2.3 How to calculate and classify the code differences and changes between

the last two versions of the application? 67

5.2.4 How to build the list of paths that contains the changes file? 67

5.2.5 Comparing with other studies . 68

5.2.6 Threats to Validity . 69

External Validity . 69

Internal Validity . 69

5.2.7 Limitations . 69

iOS limitation . 70

6 Conclusion and Future Work 72

A Questionnaire 74

v

List of Figures

2.1 Rendering React to different targets [1] . 9

2.2 Model-Based Testing Process [2] . 11

2.3 Static Analysis Steps [3] . 14

2.4 AST for simple JavaScript function . 15

3.1 Comparision between extended IFML models and MobiGUITAR tool [4] . . . 20

3.2 High level infrastructure diagram [5] . 21

4.1 Structure Diagram of the framework . 32

4.2 Dependency Graph Example . 34

4.3 Install Babel-parser . 35

4.4 Babel-parser in the code . 36

4.5 Export Function . 37

4.6 Export Variable . 37

4.7 Export Class . 37

4.8 Export Class Directly . 38

4.9 Export Regular Class Directly . 38

4.10 Export Arrow Class Directly . 38

4.11 Original View . 43

4.12 Updated View . 43

4.13 Updated View . 44

4.14 Path to be tested . 45

4.15 Data passed to React D3 Tree . 46

4.16 Path to be tested . 46

4.17 Functions in RN-AST Pruning framework . 47

4.18 Importing modules . 47

4.19 Covered core components . 49

4.20 Main page of the application . 49

4.21 Facebook Page . 50

4.22 Registration Form Page . 50

4.23 Stop Watch Page . 51

4.24 BMI Page . 51

4.25 World wide news . 52

4.26 Assign JSON Object . 53

5.1 Highest Qualification . 61

5.2 Mobile Development Experience . 62

5.3 Number of build applications . 62

5.4 Familiarity with React native . 63

5.5 Build user friendly applications . 63

5.6 Easy to use RN-AST pruning framework . 64

5.7 Easy to make changes on original source code 64

5.8 Provide the affected files . 65

5.9 Satisfy with the results . 65

5.10 useful of RN-AST Pruning framework . 66

5.11 Conditional Rendering . 70

vii

List of Tables

3.1 Inclusion/Exclusion Criteria . 18

4.1 Participants Characteristics . 53

4.2 Covered Elements by participants # 1 & #2 55

4.3 Covered Elements by participant # 3 . 56

4.4 Covered Elements by participant # 4 . 56

4.5 Covered Elements by participant # 5 . 57

4.6 Covered Elements by participant # 6 . 58

4.7 Time factor details . 59

Abstract
Nowadays, the world is facing an explosive growth in the mobile application development field,

which is increasingly considered an important role in our daily life. People are migrating to

smartphone mobile devices to accomplish their daily activities while working, playing and

communicating with others. The mobile software technology comprises a wide variety of

platforms, technologies and architecture choices. However, because of the constant changes

on software application and the increase evolving in this field, developers are supposed to speed

up the development process to satisfy the customer’s needs and provide robust applications

within a short period of time. Therefore, cross-platform development technology aims to

overcome these difficulties, where instead of building separate application for each platform,

a single application that can be run on multiple platforms is developed.

Model-based testing is a testing technique in which the test cases are derived from a model

that describes the different aspects of the system under test. Using this technique in cross-

platforms, especially the React native framework increases the efficiency and makes it faster

and easier to identify and find defects and bugs. However, once the complexity of the program

increases, the model-based testing complexity will remarkably increase. Therefore, this study

proposed the React Native Abstract Syntax Tree Pruning (RN-AST Pruning) framework,

which is based on the idea of pruning the original GUI model of the application that was built

using static analysis, to keep only the impacted regions from internal code changes. Thus,

instead of running all test cases, run only those that cover the code changes.

Our study was tested on a mobile application that was built using React native to illustrate

the idea of the proposed framework. RN-AST Pruning framework was evaluated using a case

study evaluation with the help of mobile developers and test engineers to ensure that the

proposed framework guide testers in the process of detecting bugs and defects in React native

applications.

Results shows that RN-AST Pruning framework idea is useful and provides the test engineers

with the affected files and paths that need to be tested. Moreover, it identifies exactly the

changes occurred in each file and categories them to updates, placements, and deletions based

on the differences between the original version and updated version of the source code, which

provides the test engineers with accurate results.

Chapter 1

Introduction

In this chapter a general overview about mobile application development, the need to have

a cross-platform, and the importance of having a robust testing process are presented. The

motivation behind this research and the research problem are also discussed. Finally, the

research questions are identified and report structure is presented.

1.1 Overview

Nowadays, with the heavy reliance on technology, mobile application development is evolving

rapidly and moving quickly toward being a mainstream. Mobile devices and smartphones are

becoming an integral part of our daily life. Almost 92% of internet users access the internet

using their mobile devices [6], which increases the need to support the ongoing development

in this area. Theoretically, this seems to be easy, however technically this is complex because

of the rapid development nature and imposed limitations for the mobile devices [7], especially

that the user expectations about the mobile applications are remarkably high[8].

In general, the diversity of mobile platforms makes mobile development process quite complex

and expensive, especially with the need to build the application for each mobile operating sys-

tem. This raises the necessary to have a cross-platform development to contribute in solving

this problem.

cross-platform mobile applications are those applications that are built to run on multiple

mobile platforms and operating systems like Android and iOS [9]. Such applications give

developers the ability to launch software simultaneously on various platforms, makes the de-

velopment process faster than before because as a developer you need to deploy only single

script to run against different platforms. Moreover, it offers the opportunity to reach wide

range of audience. Furthermore, using cross-platform saves money and time, where the time

to market will be reduced, which increases the application revenues [9].

Despite the huge advantages, using cross-platform technologies still has downsides and limi-

tations. The largest risk is the maturity of this technology [1], as cross-platform development

is still relatively young. Moreover, some features of iOS and Android still aren’t supported

and different practices are still under process.

React native is a cross-platform mobile development framework uses JavaScript to build user

interfaces, but instead of targeting the browser, it targets mobile platform [1]. The "bridge"

in React native is responsible in invoking the rendering APIs, where Objective-C API is used

for iOS and Java API for Android platform.

React native has several advantages [10]. The biggest advantage of using React native is that

developers do not need to build a separate mobile application for each platform, but a single

code-base can be used to build a mobile application on multiple platforms, which save cost

and time. Since React native is a JavaScript framework, then there is no need to rebuild the

application to see the modifications, which actually increases the productivity and reduces the

compilation time. Another advantage is that React native applications are built by rendering

"native" mobile UI, so smoother and better application run. Moreover, React native is an

open-source framework with a wide online available support, and there exists plenty of ready-

made and reusable libraries that facilitate the application development process. In addition

to the above advantages, using React native ensures user interface consistency between the

different platforms.

Testing process is important in determining the quality of the software. It consumes 40-50%

of the development efforts and sometimes more for software that required high level of relia-

bility [11]. In general, software testing represents the final review of specification, design and

coding. It is usually done to detect system defects, increase the reliability of the application,

and find gaps and missing requirements in comparison to the actual requirements. Moreover,

testing reduces the cost of changes and required maintenance.

The upgrade and maintenance of existing mobile applications are grown rapidly, which in-

creases the need to have a sophisticated and cost-effective software testing to ensure that

systems satisfy the customers’ needs after change[12]. Despite the great development in mo-

bile testing techniques, testing process still needs to be carefully implemented to assure the

quality of the system of non-trivial complexity; especially those used critical domains like

health, banking and payments.

It is true that testing process became more efficient and more productive, especially with

2

the use of different mobile automation testing tools. However, with the constant changes

on software applications, testers face more challenges in maintaining test suites and keeping

these test scenarios up to date, especially when using exploratory testing [11], which is based

on the testers experience and information about the system to be tested [13]. This is due to

the large number of test cases and the required time to implement and maintain them. For

instance, when the GUI elements change, the test cases usually fail to run because these test

cases can’t cope with the changes in the source code.

Many research projects have been conducted in different aspects related to the field of cross-

platform, especially React native field. According to the testing field, Nader et al [14] have

focused on the different challenges facing the cross-platform development and testing process.

Yepeng Yao et al [15] proposed an automated, distributed and cross-platform testing frame-

work for GUI-driven application. Moreover, an automated testing tool for cross-platform

called MobiTest was proposed by Bayley [16]. Wang et al [17] addressed the ability of mi-

grating GUI test cases from one platform to another by proposing a novel approach called

"TestMig" responsible for GUI test migration from iOS and Android.

However, to the best of our knowledge, non of these studies covers the static analysis and GUI

model pruning to facilitate the testing. Therefore, in order to improve the testing of React

native applications and to guide the testers while testing, RN-AST Pruning framework aims

to extend and adapt the proposed approach by Reis and Mota [18] to acclimate with React

native frameworks’ proprieties.

1.2 Motivation

Currently, there is a large involvement and movement in the field of mobile development.

Developers are racing to build and provide robust software that satisfies the customers and

users expectations and needs. Such competition between developers and companies increases

the difficulties and challenges in proving themselves and staying in the competition zone.

This actually requires them to keep their application up to date and make modifications and

maintenance in a fast manner to enhance the performance and efficiency of the provided ap-

plications.

React native development has proved its efficiency in providing and building applications that

can run on multiple mobile platforms like iOS and Android, which are the largest mobile plat-

forms around the world [7]. Testing these applications is a crucial phase in the development

3

life cycle to ensure that the application achieve what is expected and please its users.

Testing process has different approaches, model-based testing is one of them. Where, in short,

can be defined as using an application model that describes its behavior to test the application

and ensure it is as required [19]. Therefore, from that point, this research discusses using such

technique in testing cross-platform applications, especially those implemented using React

native framework. However, instead of using the entire model to test the application, why not

to prune it to show only the parts that are affected due to the different code changes or new

enhancements. Pruning the model will help testers, guide them through the testing process,

facilitate the testing process, make it easy to keep the applications updated and launch that

applications to the market faster than before.

1.3 Research Problem

Despite the great adoption of cross-platform development and the rapid evolvement in this

field, particularly React native framework, there is still a lack in the frameworks that assist

the test engineers in testing the graphical interfaces in mobile applications and provide the

testers with a subset of test cases to test instead of testing the whole test cases.

GUI testing is considered important to ensure that the developed mobile application is easy

to use and navigate for the users. Moreover, by testing the UI, testers can catch different

potential issues that make using the mobile application difficult or confusing for the user [20].

In general, it is very hard and time consuming to maintain all test cases and keep them up to

date in the short time between rapid releases, which increases the overhead on the testers and

complicates the testing process [10]. Accordingly, there is a need to provide a framework that

can assist the testing process using model-based testing by pruning the entire model to help

testers and guide them in reaching the modified GUI parts of the application impacted from

the internal changes on the source code. Therefore provide the testers with a guiding plan

and a road map to test the application, so reduce the testing process complexity and reduce

the paid effort, time and cost. Moreover, ensure that the customer’s needs and requirements

are achieved.

4

1.4 Research Questions

As mentioned before, the main goal is to facilitate the GUI testing process, assist and guide

test engineers by pruning the application model to keep only the affected GUI parts that are

related to the internally changes in the source code.

Accordingly, the following research questions are formulated:

RQ1: How to detect the GUI elements and prune the GUI model?

RQ2: How to calculate and classify the code differences and changes between the last two

versions of the application?

RQ3: How to generate the test cases that contain the list of changed paths?

RQ4: How effective is the proposed framework in detecting source code changes and producing

results that satisfy the test engineers?

1.5 Report Structure

This research report will be organized as follow: chapter 2 is the background chapter that

describes the main concepts in this research. Chapter 3 provides an overview about the latest

researches done in the field of model-based testing and identifies the gaps in the existing

studies and theories. Then, the followed methodology and its phases are explained in more

details in chapter 4. Chapter 5 explains the evaluation procedure and the collected results and

outcomes. It also discusses the framework threats and limitations. Finally, a brief conclusion

that summarizes the research and the future plan were presented in chapter 6

5

Chapter 2

Background

2.1 Overview

In this chapter, a technical overview about cross-platform technology and model-based testing

will be introduced. Moreover, the static and dynamic analysis will also be explained in more

details to provide the reader with a general overview about these concepts.

2.2 Cross-platform Development

From its name, cross-platform is developed to work on multiple mobile operating systems,

such as Android and iOS, using a single code base [21]. In this type of development, as a

developer you can build the code base once and run it on many platforms. Different languages

can be used to build and create a cross-platform application like JavaScript and Java.

Creating cross-platform mobile application makes it easy to access wide range of audience,

since it runs on different platforms like Android operating system and iOS, which are the most

famous platforms [9]. Moreover, cross-platform by default deals with the differences between

iOS and Android, which helps in building consistent application on both platforms.

In general, there exist several frameworks that help in building hybrid applications that work

on most mobile platforms. However, despite the variety of cross-platform framework, it is

important to know and realize that there’s no framework fits and ideal for everyone. The

choice of framework depends on the project and the aim of each project. For example,

Flutter is a popular framework that is widely used by many developers for building mobile,

web, and desktop apps from a single code base. It uses Dart as the programming language and

it is used in eBay, Alibaba, Google Pay, ByteDance apps. Furthermore, Ionic framework is

another example of cross-platform framework that is used to build hybrid mobile and desktop

https://flutter.dev/
https://www.ebay.com/
https://arabic.alibaba.com/
https://pay.google.com/
https://www.bytedance.com/en/
https://ionicframework.com/

applications using a combination of native and web technologies. Ionic is based on a SaaS UI

framework that provides multiple UI components for building mobile applications.

Moreover, React native is one of the most common cross-platform framework [21]. Below

section will give a wide information about this framework.

2.2.1 React native

React native is a JavaScript open source mobile application development framework to build

native iOS and Android applications [22]. Based on its official site, it was classified with

the 2nd highest number of contributors in GitHub in 2018. React native was developed by

Facebook Company (Meta now) in 2015 and nowadays, it is adopted by many companies

such as Netflix, Dropbox and many other companies. It is based on React, which offers a

fresh approach to create user interface with JavaScript. It was actually done to extend the

mechanism of React to native mobile application development.

With React native, the paradigm is “learn once, write anywhere.” With this approach, an

experienced web React developer can get up and write Android or iOS apps at a much faster

pace.

According to the official documentation of React native, there exist two ways to setup the

development environment and start building React native applications. The first is to use

React native CLI and the second is to use the Expo CLI. Using the first option may be time

consuming due to the extra complex configuration required to setup the environment to build

the React native application. When using React native CLI option you need to be familiar

with mobile development because it needs both Android and iOS emulators, so this means

it requires Android Studio and XCode to run the application, which increases the complex-

ity. While the second option is to use Expo, which is a set of tools and services that allow

you to develop apps for both Android and iOS without having to deal with Java-Kotlin and

Swift native code. To build the application using Expo you will only need a recent version of

Node.js and a phone or emulator. When run the application, Expo generates a QR code for

the application and to run the application on Android or iOS devices, you only need to scan

the generated QR code using Expo Go application, which should be installed on the device.

Therefore, you do not need an emulator or a Mac to run React native apps with Expo.

Using React native provides multiple advantages [10]. For example, it offers a hot reload

feature that increases the development process speed by showing the changes made on the

7

application screen immediately without rebuilding the application, which increases the pro-

ductivity and reduces the compilation time. In addition, reusability is considered one of the

biggest benefits of using React native, where instead of building and creating separate mobile

application for each platform, the developers can adapt one created structure to be used in the

other platform, since React native has pre-developed components in its open-source library

that can be used by developers instead of writing it from scratch. This feature allows the de-

velopers to reuse almost 90% of the codes on both operating systems platforms. Furthermore,

React native is considered an open-source platform, which means that it is free to access and

modify the source code. It also has a big support community that helps in case developers face

struggles or any obstacles in solving problems. In term of cost, it is significantly cheaper to

create an application with React native, since only a single development team directly creates

the application instead of having two teams. Thus, easier to manage and track the progress

and less required resources to build the mobile applications. Furthermore, an important point

to take into consideration from business perspective is the consistency between the versions

of the Android and iOS applications. Using React native ensures that the user interfaces are

the same on the different platforms.

However, React native still has a dark side and a set of challenges as well [10]. For instance, it

was developed and presented to the market in a short time and it is still fresh and immature,

which causes low application performance and may harm the application if compared with

native applications. Due to this issue, developers might face various issues when it comes to

packages compatibility or debugging tools, which will negatively influence the development

process. Moreover, due to the its immaturity, React native still lacks some components and

others still underdevelopment, which may obstruct the development process if developers want

to build an application from scratch. At the core of React native technology, developers must

have a concrete knowledge about the web and native technologies and they must have the

ability to work on JavaScript, project configuration UX guidelines, etc. Therefore, it is not

an easy to build a cross-platform team.

In order to understand the technical part of React native, there is a need to recall the Virtual

DOM (Document Object Model), which is one of React’s features [1].

The Virtual DOM in React acts as a layer between the developer’s description about how

things should look like (developer code), and the work done to render the application onto

the page [1]. In general, to render interactive user interfaces in a web browser, the browser’s

DOM must be edited and this is actually an expensive step since writing on DOM impacts the

8

performance. Therefore, instead of rendering the changes on the page directly, React makes

the necessary changes by using an in-memory version of the DOM and re-renders the minimal

amount of changes [1].

In addition to the performance benefits that the Virtual DOM offers, its real optimization lies

in the power of its abstraction. It acts as an abstraction layer between the developer’s code

and the actual rendering.

Figure2.1 shows how React native works [1]. As we can see the React native is made up of

two sides, the JavaScript side and the native side. The native side could be Objective-C/Swift

for iOS or Java/Kotlin for Android or other like web or desktop. The figure shows that the

bridge component is responsible for allowing both sides to talk with each other, where in-

stead of rendering to the browser’s DOM directly, React native recalls Objective-C APIs for

rendering iOS components or Java APIs for rendering Android components.

Mainly, React components uses render function to return markup to describe how components

should look like. In React for the web, this markup is directly translated to the browser’s

DOM. However, in React native the markup is translated to suit the host platform based on

the bridge component. As a result, React native has the ability to target other platforms by

just writing the bridge component.

Figure 2.1: Rendering React to different targets [1]

In general, when React runs in the browser, the render life-cycle begins by mounting the

React components. Then, handling the rendering process of components. According to the

rendering process, the developer return HTML markup from the render method of the React

component. Thus, React renders the component directly into the page.

For React native, the life-cycle is similar to React life-cycle [1], but the rendering process has

some differences because React native depends on the bridge. The bridge is responsible for

translating the JavaScript calls and then invoking the API of the host platform, which may

9

be Objective-C for iOS and Java for Android .

Views are the basics building blocks of the user interfaces in both Android and iOS. In

general, the views are small rectangular elements on the screen used to display text, images

or respond to user input. In Android development, views are written in Kotlin or Java; and

in iOS Swift or Objective-C are used to write the views. However, in React native these views

can be invoked with JavaScript using React components, and at run-time React native will

be responsible for creating the corresponding Android and iOS views for those components,

which are called Native Components by the help of bridge [23].

In general, there exists a set of essential, ready-to-use Native components comes with React

native and can be used to start building the application [10]. These components are called

the Core Components, which make it easy for anyone to dive into React native Applications

development.

2.3 Model-Based Testing

As the applications’ code-base expands, small errors and edge cases can cause larger failures

and lead to bad and unsatisfied user experience, which influenced the application negatively.

Therefore, testing the application before releasing is important to prevent fragile program-

ming and make sure that the application is working as expected. Moreover, it ensures that our

code will work properly in case we added new features or make changes to existing features.

Thus, testing process has many values and good tested application increases the quality of

that application and makes it reliable and easy to use, which encourage people to use it, so

increase the overall revenues.

In general, manual testing is no more accurate to test the different mobile applications and

test engineers can no more rely on it to provide a good application [24]. Therefore, it has

become a crucial need to have an automated testing. Model-based testing is considered one of

the best approaches to ensure that the application works as required and satisfies the audience

needs [19].

From its name, model-based testing (MBT) is simply a testing technique in which the test

cases are derived from a model that describes the functional aspects of the system under test

[2].

MBT describes how the system would react and responds to an action and see it the applica-

tion responds as excepted. It basically can’t be used and introduced suddenly in the system,

10

instead it has to be done gradually. Figure 2.2 illustrates the different stages of model-based

testing.

Figure 2.2: Model-Based Testing Process [2]

Model-based testing has five stages:

• Model: this step aims to build an abstract model to represent the different aspects of

the software under test. Different ways can be used to model the software like using the

UML or the Finite State Machines.

• Generate: where a set of abstract tests are obtained and generated from the model

generated from previous step.

• Concretize: in this step the abstract tests are converted to a set of test scripts to make

them executable.

• Execute the set of test scripts on the software to be tested

• Perform an analysis to the test execution results and make the corrective action

11

Basically, it is important to know that the effectiveness of the generated test cases depends

on the correctness and completeness of the generated models.

This kind of testing approaches has different advantages. It optimizes the software testing

time and allows the developers to focus of writing models that cover the different system

requirements. Moreover, it reduces the maintenance cost and it generates minimal number of

test cases that ensure and validate the software functionalities, provide more code coverage

and increase the efficiency of the testing process and less error-prone. However, MBT still has

difficulties and disadvantages; it actually requires a skilled testers team to focus on building a

testable software and models that describe the real-life user experience, which means a steep

learning curve.

In general, there exists several type of models that describes the different aspects of the

system behavior. For example, the State Transition Diagram, this model helps in estimating

the testing results based on the input selected. Moreover, various combinations of the input

result in a corresponding state of the system. This model illustrates that the software can,

at any point in time, be in a specific state from a finite set of possible states. The Unified

Modeling Language (UML), it is a modeling language that is used to create visual models that

describe the different system behaviors [25]. Another model type is the Data Flow Model, it is

a visual representation of the information flows within a system. This type of modeling shows

how data enters the system and how it leave, it also shows what changes the information

and where data stored. Form Data flow model we can determine the scope and boundaries

of the system. Another type of models is the Control Flow Graph, it actually represents the

flow inside a program unit, and it also shows the paths to be traversed during the program

execution [26]. A Decision Tree Model is another model, where it represents the different

actions to be performed based on given conditions using if-then-else and switch statements

[27]. Using this type of models helps the testers in searching the effects of combinations of

different inputs. Moreover, it also proves its effectiveness in dealing with complex business

rules.

2.4 Code analysis

In general, developers aim to write a bug-free code that meets the requirements and design

specifications and prevent security issues. Therefore, in order to ensure that these three goals

have been met a code analysis should be conducted.

There exists two types of code analysis, the static code analysis and the dynamic code analysis.

12

Both play an important role in the development and testing process. Below each type was

taken into account separately.

2.4.1 Static Analysis

The importance of software testing process was described previously in this work, where it

plays a crucial and important role in providing a good quality software products. The main

objective of software testing is to apply a set of techniques and strategies to detect errors and

failures in the software either in real or simulated environments[18]

In general, code review had proved its efficiency in producing a good quality and reliable

software. Therefore, this approach was adopted by many development teams and projects.

Static analysis approach is an approach to review the source code of the application, make

sure it applies specific rules and adheres to industry standards; it is applied without the

actual execution of the program as opposite of dynamic analysis which is done by executing

the programs [28]. Theoretically, this analysis type can examine the source code itself or the

complied form of the source code, where during the static analysis, the code is transformed

into some intermediate model or abstract representation model to match come recognized

code patterns [29]. Static analysis is usually performed early in the development before testing

begins, and that what makes it different from dynamic analysis, which identifies defects after

running the application and during the testing process. However, there might be missed errors

and defects in dynamic analysis that static analysis can find.

Figure 2.3, illustrates the different steps of static analysis process [3]. As seen, the process

starts by the lexical analysis, which means trying to understand the code lines by breaking it

down into smaller chunks "tokens".

These tokens could be any valid entity in the programming language like literals, variables,

operators and function calls. This phase ignores and discards those characters that do not

contribute in the semantics of the program like white-space, comments, etc.

The second phase of the static analysis is the syntactic analysis. At this step, the parser takes

the tokens that we already have from the previous phase and validates that the sequence of

these tokens conforms to the grammar. Then, it organized them in an abstract syntax tree

(AST) that represents a high-level structure of the program. Note that, since there exist

several programming languages, the AST representation for each language may differ from

the other.

13

Figure 2.3: Static Analysis Steps [3]

In this research approach, static analysis will be used to build the abstract syntax tree

for the mobile application.

Abstract Syntax Tree (AST)

Abstract Syntax Tree is a tree-structural representation of the source code that describes

the code snippets of a specific programming language [30], where every node in the tree has

at least the type it represents like Literal, VariableDeclarator, MemberExpression, etc. It is

widely used in compilers to represent the structure of the source code, since it is the result of

syntax analysis phase of the compiler.

During the process of building and generating the AST, some parts of the code that don’t affect

the semantics of the code are discarded while other are preserved. The preserved information

are those that are vital to the AST purposes, for example:

• Variable types, its location

• The order and definition of executable statements

• Identifiers and the assigned values

• The left and right components of binary operations

14

The AST Explorer is a tool helps in visualizing the ASTs of different popular programming

languages like JavaScript, Python and java. Below is a screenshot of the produced AST for a

simple JavaScript code 2.4.

Figure 2.4: AST for simple JavaScript function

One thing to note is that there is no "one" AST format. They might differ based of the

programming language and the used parser.

2.4.2 Dynamic analysis

The alternative for static analysis is the dynamic analysis, which can be defined as the process

of testing and evaluation the code while software is running [31]. This type of analysis is widely

used by developers that are under pressure to deliver clean and safe applications faster, where

dynamic analysis tools help them in debugging the running threads and processes of the

applications. It also help them in finding performance problems and memory leaks during the

application execution, so the ability to find the impact on the reliability of the application.

It is important to know that both analysis approaches are complementary to each other, since

no single analysis approach can find every error. Dynamic analysis is used to reveal complex

defects and vulnerabilities that are hard to be discovered by static analysis. While static

analysis examines all possible execution paths and variable values not only those invoked

during execution [32].

15

https://astexplorer.net/

Chapter 3

Literature Review

3.1 Overview

This chapter provides an overview of the current knowledge in the field of model-based testing

in mobile applications graphical user interfaces; it identifies the relevant theories, studies and

determine the gaps in the existing researches.

In this study, 22 papers were selected based on the selection criteria explained below. These

papers grouped into two categories. The first group explains the automatic model-based

testing and the second group talks about maintaining the graphical user interfaces.

The rest of this chapter is organised as follows. Section 3.2 explains the search methodology,

the used terms, the search databases and the selection criteria. The remaining sections provide

a more comprehensive overview about the different categories found when analyzing and

synthesizing the study papers.

3.2 Search Method

During this research a thorough and rigorous search method has been conducted to provide

a clear vision about the searched topic, reduce the bias, increase the transparency, and to

identify the gaps in the existing researches. It needs a careful and structured search process

with a good search terms in a reliable databases

The following sections will clarify our search terms and the sources databases and the search

result.

3.2.1 Search Key wording

Since the main topic is related to GUI model-based testing for cross-platform mobile applica-

tion and GUI ripping, my search was centered around these fields. Therefore, here are some

search words and strings that I used during my search:

• Mobile model-based testing

• GUI ripping

• GUI model generation for mobile application

• Mobile application static analysis

• GUI testing

• Mobile Test automation

• GUI models maintenance

• Static analysis for model-based testing

3.2.2 Source Databases

According to the databases to search in, it is important to get and search in a comprehensive

and trusted list of sources to ensure covering most of the searched areas and fields without

missing relevant studies.

The internet is full of different resources to search in. However, in this research the search

process was conducted mainly using the Google Scholar web search engine, which provides a

broadly search for scholarly literature. The literature studies were adapted the most reliable

and trusted databases to search in.

3.2.3 Selection Criteria

As mentioned in the above sections, the search process was done using different data sources

and using different search terms and strings. Hundreds of studies related to our main topic

were found and different strategies were used to select the most appropriate studies. Moreover,

snowballing process were used, which broadened the scope of our search.

In general, to start the filtration process, after taking the search output, we applied the

inclusion and exclusion criteria that is illustrated in the below table 3.1. After that, we skim

17

https://scholar.google.com/

read the resulted papers, where we read the abstract and the introduction and based on them

and if related to our main topic we continue the reading process to gain a more comprehensive

overview about each study.

Following this search protocol, we end up with about 22 strongly related papers. These

papers were read more carefully, then we dumped the information into a table contained the:

title, year, priority, research problem , methodology, Result and General notes(if

needed)

Inclusion Criteria Exclusion Criteria
Published within 5-6 years Old studies
Study size >= 4 pages Full text cannot be obtained
Focusing on GUI ripping and
mobile Model based testing
English

Table 3.1: Inclusion/Exclusion Criteria

After reading the resulted studies, we categorize them into two categories that are explained

in more details in the below sections.

3.3 Automatic Model-Based Testing

Generally, GUI testing is an important activity aims to detect faults in the application in-

terfaces, which may lead to error in the application. The testing process for applications

with graphical user interface is know to be complex because it is usually hard to predict the

human interaction with the application and because of the infinite number of possible event

sequences [20]. Different testing approaches were used to handle the testing process. Model-

based testing is one of the techniques used for GUI testing, it is about automatic generation

of test cases from the model of the application under test without relying on the traditional

testing techniques like manual scripting or capture and reply [2]. Model-based testing has the

ability to accomplish the testing tasks in a more efficient and cheaper way if compared with

traditional testing techniques.

Manual construction of the application model is tedious and error-prone. Moreover, depend-

ing on automatic generation methods considered a challenging process. Many studies and

tools were proposed as automatic model-based testing tools, that help in building the model

dynamically by exploring the execution environment of AUT.

18

Ibrahim et al in their study [33] proposed a hybrid technique to support the reverse engi-

neering of the GUI model of the mobile application. The basic idea of their technique was

to use both static and dynamic analysis; the GUI Information was extracted using the static

analysis for the byte-code of the application and then a dynamic crawling was done to reverse

engineering the GUI model of the application. Their static analyser took the application

APK as an input, started the analysis process to end up with a window transition graph

(WTG), which is made of nodes(GUI Widgets) and edges(Events). This graph then entered

the dynamic crawler to extract the GUI widgets and its related events to produce the GUI

state model as an output. They aimed to clarify the GUI behavior using an effective and high

quality model.

Using both approaches (static and dynamic) enhanced the scope and the completeness of

reverse engineering process, where it exploited the strengths in each approach. For example,

the static analysis based on the idea of extracting accurate and complete information about

the application by analyzing its source code or binary code without execution. However, it

was difficult to gain a comprehensive information about the behavior of the application GUI.

Therefore, the dynamic analysis was done to provide information about the behavior of the

application.

They made a prototype called AMOGA for their study that used the hybrid approach to gen-

erate a model to describe the behaviour of a mobile application. This model can be used to

generate test cases to test that application. In another study that discussed the importance of

model-based testing for mobile application is the ORBIT tool [34]. This work is an automated

GUI-model generator for mobile applications. The proposed work used the static analysis on

the mobile application source code in order to extract the different events and actions sup-

ported by each GUI widget. Then, these events were exercised on live using a dynamic crawler

to identify the GUI behavior of the application. Identifying the different actions and events

in the static analysis involved three basic steps: (1) Identify where the action is registered or

instantiated, (2) Locate the GUI component on which the event is fired, (3) determine the

component identifier to help the dynamic analysis in recognizing the component and firing

the action. One of the limitations of this approach compared with AMOGA, is that its static

analysis less comprehensive. It does not capture menus and dialog and it actually does not

take into account the event handlers UI effects and the triggered callbacks.

AMOGA [33] was evaluated on a real mobile applications and it obtained satisfactory results

and the generated model covered most of the application behaviours. MobiGUITAR [4] is

19

another automatic model-based testing tool that is based on reverse engineered mobile model.

Its idea was inspired by the reverse engineering for desktop applications. However, different

challenges appeared between the mobile and desktop fields. For example, mobiles are state

sensitive, which means that the stateless event-flow graph (EFG) used in desktop is no longer

good for mobile application. Moreover, the test adequacy criteria based on EFG is no longer

available, instead a criteria that takes the state-based life cycle of Android applications is

needed. Therefore, MobiGUITAR was proposed to overcome these challenges. This tool is

made of three primary steps: (1):Ripping to create the state-machine model by dynamically

traverse the application GUI. (2): Test cases and event of sequences generation based on the

model and the test adequacy criteria. (3): Execution to replays the test cases.

Another study was made by Huang and his colleagues [35] about reverse engineering using the

static analysis in extracting the different GUI models for Android application. In their study,

they represented the analysis results using the IFML (Interaction Flow Modeling Language)

to help human in understanding the models and facilitate the modification processes. The

study based on the importance of extracting the GUI objects, the interaction events, window

transactions and the GUI constraints in order to understand the application behaviour and

enhance the model-based testing where more events can be triggered and different input val-

ues can be used due to more extracted GUI elements. Below table 3.1 compare their results

with MobiGUITAR [4] results. Table indicates that the new study covers and contains more

GUI elements compared with MobiGUITAR tool.

Figure 3.1: Comparision between extended IFML models and MobiGUITAR
tool [4]

Chuanqi Tao and Jerry Gao [5], discussed the rapid evolution of mobile and wireless

technology, which brought new challenges and issues in automatic mobile testing process.

20

One of the biggest issue is the lack of mobile test scripting techniques and tools that can deal

with the diversity of mobile test environments and devices. Therefore, they introduced a new

tool based on GUI ripping to facilitate the validation of numerous mobile applications. They

provided a large-scale automation solution by incorporating different open-source technologies

like Appium and Selenium. Their approach can increase the test coverage by allowing the

parallel execution of test scripts on multiple mobile devices running on different platforms.

The GUI ripper in the proposed approach automatically analyzed the mobile application using

the different random techniques and exploration strategies like Depth First Search(DFS) and

Breadth First Search(BSF). GUI ripper is able to extract the different GUI widgets and its

properties from the GUI window to end up with generating a GUI tree, which is made of

nodes, each represent a GUI window or activity. From this tree, we can generate the Event

Flow Graph (EFG) that made of nodes each represent a GUI event that contains the matching

GUI widget ID from the GUI tree, and the edges between these nodes represent the "follow"

relationship between these nodes. Test cases can be generated based on the EFG, which

maximize the degree of application UI coverage.

Below figure 3.2 is a high level infrastructure diagram that describes their proposed approach.

As we can see there is a test automation web application where users can upload the mobile

(Android) APK file. From this web application, users can view the test execution and the test

summary through MAC terminal. After upload the APK file, the test automation server start

the ripping, analyzing dependencies and generating the test cases. These test cases are then

passed to the test runner that drive it to the selenium grid. These test scripts are executed

using the running Appuim nodes on different mobile devices or emulators that are already

registered.

Figure 3.2: High level infrastructure diagram [5]

21

As previously mentioned, mobile development process is full of challenges [24]. One of

these challenges is the huge diversity of hardware and software. Moreover, event-driven pro-

gramming, which is based on user interactions and external events that the program must

react to. In addition, the hug development in the mobile frameworks and platforms is consid-

ered a new challenge in the development process. These challenges actually affects the mobile

development negatively and leads the programmer to write an error-prone code, because of the

different considerations that must be taken into account when developing mobile applications

[36]. Furthermore, as the competitions between mobile development companies are signifi-

cantly increasing, developers are supposed to pay more effort to build an application that

considers all states of the applications, its context and its external environment. Although,

the testing process is developed in recent years, defining new test suits is still a difficult process

that requires more efforts, especially that there is no single model that covers the different

aspects in mobile applications like the domain, context, usage and the related information in

GUI. Thus, the manual creation for each model is time-consuming. Therefore, Santiago and

his colleagues in their study [37] proposed a multi-model representation that used the static

and dynamic analysis to extract the different information of the application. Their approach

helped in automatic extracting of augmented models that combined the different information

needed in the testing process, in another words, single model that combined and synthesized

relevant information from different models. They evaluated their study on Android applica-

tions and they found that the proposed model can be used to generate test cases using the

environmental variables from the context model, generating the inputs for test cases using

the domain attributes, and using the GUI information to increase the functionality testing

coverage.

Generally speaking, the increasing number of mobile applications with rich GUI causes a

growing need to have automatic techniques of GUI testing. A new study made by Gennaro

and Imparato [38] to improve and enhance the quality of android testing process and made

it more secure and reliable, they combined the GUI ripping technique with the input pertur-

bation testing.

Their basic idea was to explore the GUI application and create a model, then use that model

to generate the perturbed text inputs. They discussed one of the challenges in current GUI

ripping tools, which is providing test inputs for different application fields without human

instructions. This actually affects the code coverage and does not guarantee testing all paths

22

of the application. Therefore, they presented a new tool called SlumDroid , which is a mod-

ified version of GUI ripper [39], that was responsible for interacting with the user interface

and emulating the user interactions and extracting the executable tasks that were stored in

the task list. Moreover, it used heuristics to reduce the redundancy in GUI explorations

by determining the similarity between current GUI states and the previously visited. The

produced GUItree and the captured screenshots from the ripping, entered a separated tool

called GUIAnalyzer to perform the input perturbation. GUIAnalyzer had the ability to show

the different characteristics of GUI input fields like the input type, so it used the regular ex-

pression perturbations to generate text inputs for these fields. GUIAnalyzer produced XML

format file with a list of input fields and the associated perturbed inputs to be used in the

coming test sessions. Their approach was evaluated using case study approach, where they

applied it on ten Android applications. The overall result was satisfying and it showed that

using the perturbed inputs increased the code coverage between 3% and 70%.

Another automated model-based approach was made by Tianxiao and his partners [40]. Their

approach introduced a new and fully automated model-based testing that increased the effi-

ciency of mobile application testing. They got benefits from the testing run-time information

to optimized the application model dynamically, which improved and enhanced the model

precision and code coverage compared with existing approaches that guide the testing process

with static GUI models, which means that the model does not evolve its abstraction during

the testing process.

In general, existing testing tools construct the GUI-based model for the application by map-

ping the different GUI actions to the model actions and the GUI views to the states, where

each transition between states is labeled with model action. All existing model-based approach

applied the static abstraction/mapping using heuristics rules during the testing process. How-

ever, the process of mapping the GUI actions to model actions is a critical and challenging

step [40]. On one hand, if the model is overly fine-grained then a state explosion may oc-

curs which will affect the process of exploring the testing model. On the other hand, if the

model is overly coarse-grained then the knowledge on model action won’t gather sufficiently.

Generally, inefficient mapping occurs when mapping multiple GUI actions having different

behaviors to the same model action, so the model action don’t replayed as expected during

the model construction.

The proposed approach is called APE. It provided an effective dynamic model mapping based

on the run-time information [40]. It refined and evolved the model by looking for the more

23

suitable mapping that balance between the size and precision of the model. This approach

if compared with existing techniques, instead of using the static mapping and operating on

a fixed granularity, it dynamically detect the granularity as required, which caused a higher

code coverage and more reliable application. APE dynamic mapping was represented with a

decision tree, which improved the testing efficiency.

APE was evaluated on 1316 popular applications and results showed an out performance in

testing coverage and crash detecting process compared with the state of the art Android GUI

testing tools. Results showed that APE provides 26-78% more activity coverage, 17%-22%

more method coverage and 14%-26% in instruction coverage.

In a study conducted by a group of researchers in China Stoat novel guided approach [41] was

presented that aimed to test the application functionalities from the GUI model and to vali-

date the different user/system interactions, since existing model-based testing tools coverage

is still limited because of the incomplete UI exploration, which cause inefficient testing results

The proposed approach operated in two phases [41]. First, it took the application as an input

and generated a stochastic model that described the GUI interactions by employing a dynamic

analysis technique and static analysis to explore the different apps behaviours and construct

the model. Second, the testing process was guided using Markov Chain Monte Carlo (MCMC)

sampling to generate the tests from the model to detect more bugs by traveling on less paths.

Stoat was evaluated on 1661 Android popular applications and results showed a high coverage

and effective testing compared with existing testing tools.

Most of the mobile testing techniques generate test cases based on only the different GUI

events, without supporting the external events. However, in order to ensure that these ap-

plications are working correctly and perform its functionalities properly; one of the recent

studies made by Asmau et al [42], proposed a testing approach for mobile applications that

took into account the two type of events. The GUI events, which were identified using the

static analysis of the application bytecode, and the context events from analyzing the mani-

fest.xml file.

External events are generated by the operating system as a response to incitement from ex-

ternal sources. For example, receiving SMS or missed call. Android operating system handles

the external events using the Intent messaging object, which facilitates the communications

between the different components of the application [42]. The permission-based model is used

by Android operating system to control the behavior of the application when accessing sensi-

tive data and to notify the user about the dangerous behavior of the device. Generally, each

24

mobile application should declare its permissions by listing them in the manifest file.

A previous study [43] was made by a group of researchers to identify the context events by an-

alyzing the application manifest file without taking into account the source code. Therefore,

their approach was not comprehensive enough. However, in this proposed study, the authors

considered analyzing the application source code in addition to the application permissions

file to provide a more comprehensive information about the context events.

In this approach, in addition to analyzing the application manifest file, static analysis was

used to identify the different application events by analyzing the application byte-code. They

used the GATOR toolkit to handle the byte-code analysis process, where the GUI, event han-

dlers and the callback results were analyzed to determine the GUI and system events. The

result of analyzing was a Window Transition Graph (WTG), that made of nodes describing

the application’s windows and activities, and edges describing the events between these win-

dows. This approach was applied on real applications and it showed an increase in the code

coverage, which enhanced the application quality.

Static analysis was also used to construct the model in the proposed approach by S.Yang at

al [44], where they used static analysis generate a model indicating the behavior of Android’s

application. They proposed a particular form of GUI models, which is the window transi-

tion graph (WTG) that represents the GUI window sequences and the associated events and

callbacks. This model can be used to increase the application understanding and facilitate

the testing process. The WTG is made of nodes that represent the different windows in the

application, and the edges that represent the transitions triggered by callbacks in the UI.

These callbacks can be event-handling callbacks or window-life cycle callbacks.

The good analysis and representation for these callbacks has a critical role in the WTG con-

struction. Moving between Android windows is done using these methods and during the

transition additional callback may occurs, which may cause a complicated interleaving be-

tween these callbacks [44]. Therefore, the researchers addressed this problem by the help of

window stack, which stores the currently alive activities. It captured the additional windows

categories, and it modeled the changes to the window stack. For example, single transition in

the WTG can have multiple complex effects on the window stacks which are all part of the

same WTG edge. Therefore, they gave more attention for careful modeling of the window

stack changes and the related callbacks, which helped them in identifying the valid and feasi-

ble paths in the WTG. Static analysis was used to construct the WTG of the application. It

25

takes as input all run-time windows, the different widgets in these windows, the different wid-

gets events and their event handler callbacks. Given these input, the construction proceeds

in 3 stages. The first stage is constructing the initial edges explained using the trigger event

labels. The second stage extended these initial edges to include the push/pop sequences and

callback sequences. The final stage is the backward traversal of the graph to determine the

correct target nodes of edges.

Their approach was evaluated using a twenty open source android application to determine

the overall cost of applying the previous stages and to evaluate the precision to manually

constructed model. Results show the effectiveness of their algorithm and approach. Gener-

ally, the application has different number of GUI windows that must be adapted to different

versions of the mobile, which actually increases the testing process complexity. Many testing

approaches and techniques have been proposed to help in testing such cases. Some techniques

got benefit from the GUI layout to reduce the obsolete GUI events [45], instead they developed

new strategies to guide the path exploration process. However, the exploration process lacks

the management criteria. Model-based testing approaches came and actually, it developed a

number of exploration techniques like the Depth-First search (DFS), the Breath-First search

(BFS) and the hybrid exploration to the model. Despite that, it is still a challenging process

and test the application precisely and completely due to the non-deterministic events, which

interrupt the application exploring process, and the state explosion problem that affects the

testing performance and increases the complexity. Therefore, Tianxiao Gu el al [45] proposed

the AimDroid approach, which aimed to improve the model-based technique performance

and maximize the coverage while limiting the length of the test sequences and reducing the

unnecessary transition between activities.

AimDroid explored the application using multi-level method. It first discovered the unex-

plored activities using the BFS algorithm. Then, it isolated the discovered activities into a

cage and it exploited these activities intensively with a learning reinforcement using fuzzing

algorithm to help in discovering new activities. Thus, simplifying the search complexity and

manage the consumed time on each activity (collection of widgets).

The proposed approach is made of various components implemented in a client-server style.

The server is responsible on guiding the exploration process, while the client is an Android

device or and emulator that is connected to the server. AimDroid takes the APK file to end-

up with different reports for program diagnoses. The testing process is divided into episodes,

each focuses on a single activity to explore. This activity is isolated in a cage, which will

26

block the transitions to any other activity from that activity. Each episode is divided into

iterations within a period of time. During each iteration, AimDroid builts the different states

and actions for the current GUI, then it selects an action based on the learning module, this

action is used to generate the different events on the application.

AimDroid has been evaluated on 50 popular real world application. Results showed the out-

performance of this approach in code coverage and in detecting crashes compared with other

tools.

Jacinto and Alexandre in their contribution [18] proposed an approach to help in exploratory

testing by providing a GUI model of the regions that were affected by the internal code

changes.

Their idea came from the gap between the GUI elements and the internally changed elements.

This gap produced when testing the application by focusing on unstable test scenarios and

examining the change requests of the most recent bugs or improvements. The information

gathered from these change request or these test scenarios are not accurate and not enough to

determine the affected GUI elements. Therefore, the researchers employed the model-based

testing to help reducing this gap. They provided a pruned GUI model by keeping the GUI

elements that were related to the internally changed elements in the source code. They used

the static analysis to generate the full GUI model of the application; which was made of dif-

ferent window elements that were connected by event elements as responses from user actions,

and then this model was filtered using the reachability analysis to end up with a pruned GUI

model.

To keep just the affected regions, they calculated the code differences between the application

source code and the previous version of the application from the code repository. This process

was the hardest part in their work because it was not just getting the differences like string

diffs, instead a static analysis was used to detect the new and the modified methods.

Their approach was evaluated on five GUI applications and it showed an increase in code

coverage reached 60.40%.

It is true that model-based testing approach has approved its effectiveness in testing the

functionality of mobile applications and providing satisfied applications in short interval of

time. However, in the context of mobile applications testing, model-based approach still faces

problems like the testing coverage inadequacy and the large number of generated test cases,

which increases the testing time and management efforts. Therefore, Ahmed and his partner

27

proposed a technique [46] to generate minimal number of functional test cases with a maxi-

mum coverage of the mobile application. Their approach helps the developers and testers in

providing mobile applications in short interval time with less effort.

The proposed approach was made of four steps. The first step was to identify the application

events, then classify these events and eliminate the reachability events to finally test cases

generation step.

The application events identifications was done by extracting all application events form the

XML file that contained the already generated event flow graph. After that, these events

were classified to identify the different types of event. The reachability events; these events

contained the open/close menu and window events, the system interaction events that used

to interact with the application under test and the termination events that were used to

terminate the modal windows. The third step in their approach was to eliminate the reach-

ability events because they just change the structure of the application not interact with the

application. Thus, eliminating these events reduced the testing time and generated minimum

test cases that covered most of the application functionalities. Finally, after finishing the

elimination process, the approach started the test case generation process from the event flow

graph, where the edges in this model between the different nodes represented the test cases.

The proposed technique results were compared with other techniques results by applying the

new approach and the previous approaches to an application called "Create Shape, calcu-

lator". Results stated the effectiveness of the proposed approach in generating minimum

number of test cases with high coverage reached 94.8%.

3.4 GUI Models Maintenance

Farnaz et al [47] proposed a technique "GUIFetch" that took the application graphical user

interfaces sketch, and from the huge number of open source application in public repositories,

it identified the applications that are similar to these provided sketch.

The process involved two phases, the Analysis Phase and the Similarity Computation Phase.

The analysis phase responsibility was to take the different application sketches, the transi-

tions between them and a set of keywords, and then searched over the public open source

repositories to find relevant applications. GUIFetch removed duplicates applications or those

that likely have similar or identical source code. After that, GUI hierarchies with transitions

between the GUIs for the user sketch were generated using a prototyping tools called pencil.

Subsequently, GUIFetch used the static and dynamic analyses to generate the GUI hierarchies

28

for every possible screen of the related application. The similarity computation phase took

the source code of the matched, non-duplicate applications, the GUI hierarchies for these

applications’ screens and those for the user sketch. It also took the transition graph from the

analysis phase. In this phase, GUIFetch computed the overall similarity between each appli-

cation and the sketch. It first calculated the screen similarity. which meant the similarity

between each screen in the application and each screen in the sketch. Then it computed the

transition similarity in the application and in the sketch to check if the transition defined by

the user in the sketch exists in the application. Using the screen similarity and the transition

similarity, GUIFetch computed the overall similarity score by adding these scores.

GUIFetch helped the developers in building their GUI applications and assessed them whether

there are existing application similar to what they want to develop. It was implemented for

Android application and evaluation showed promising results where it showed it effectiveness

in helping developers in designing and developing their applications.

Usually when doing regression test and when application evolve, GUI test scripts fail because

of the changes in the application. GUI test scripts refer to the exact sequences of events to be

executed, and they are very sensitive to the changes occur in the structure or the application

workflow. While it is preferable to repair the current test scripts, it is hard and expensive to

do so manually. Therefore, there is a need to have an automatic way to maintain these test

scripts after GUI evolving.

Chatem [48] is an automatic GUI test script maintenance technique proposed by a group

of researchers for Android applications. It took the GUI model for the base version of the

application, the model for the updated version and a set of test scripts for the base version

application, then it automatically extract the changes between the two models based on their

corresponding Event Sequence Models (ESM). Finally, it constructs alternative test actions

and replace the obsolete test cases with the alternatives. Moreover, new test scripts are fen-

erated to test the new events and widgets that were added to the GUI screens.

In their approach, they used Gator [44] to construct the initial ESM for the application.

However, the generated model may be limited and miss feasible behaviors, so they executed

the application to confirm the important behaviors of the ESMs. According to extracting the

changes between models, they extracted the changes first at the screen levels, then the widget

levels and finally at the connection level.

Sebastian Bauersfeld ensures the importance of having a robust and high quality GUI due

to the huge evolving in tablets, smart phones and the heavy reliance on them to achieve our

29

daily lives activities. Testing these GUI applications is still a challenge, where the manual

testing is expensive, limited and time-consuming process especially when doing regression

test. Therefore, Sebastian proposed a new regression testing tools for GUI applications which

is called GUIDiff [49]. It compared the GUI states between the two different versions of the

application under test to end up with a list of detected differences.

The basic idea behind GUIDiff is to run the two versions of the application in parallel and

report the differences between the GUI states to the testers. Therefore, the GUI state informa-

tion should be captured in widget trees. After that, the two versions of the same application

are run side by side to notice the differences between the states in the widget tress. Doing so

will compare the properties of the same controls against each other.

In GUIDiff the widget trees need to be aligned to find the identical control. Therefore, the

same actions on identical control pairs can be executed which allows the parallel execution

of the two versions of the application. Moreover, comparing the different properties of the

controls like title, color, style, etc helps in detecting and reporting the differences, so helping

the testers in observing these differences.

Such approach has many challenges; the process of tree alignment is expensive and may

affect the performance and slow down the test execution. In addition, since the tool is semi-

automatic where testers are part of this testing process, it would be exhaustive to them to

label every and each difference between the trees.

3.5 Summary

This chapter illustrated and included different topics and subjects. The search methodology,

terms and the inclusion and exclusion were explained in details. Moreover, critical literature

review was conducted, about 22 papers have been studied carefully. The problem statement

and the proposed approaches for each study have been identified, which covers the field area

and strengths our knowledge about this topic.

All studies highlighted the importance of providing a good mobile application with a high

quality to satisfy the customers’ needs especially with the increase of competing companies

in the market. As mentioned before GUI testing is a challenging process because of the

complexity of predicting the human behaviors while using the application as well as the large

number of event sequences that need to be tested before launching the application. Model

based testing is one of the approaches that help in GUI testing and that is actually the base

of all studies we have already read. The basic idea of this type of testing is generating test

30

cases relying on models illustrated the application. From our elaborating and critical reading

we have notice that all studies were evaluated on Android operating systems which is widely

used over the world. However, none of these studies dealt with using model-based testing in

cross-platform applications, which produced a gap and this is where we will elaborate to fill

such gap.

31

Chapter 4

Methodology

4.1 Overview

As mentioned before, our approach is mainly based on generating a pruned model to facilitate

the testing process of React native applications. After investigating the literature review and

providing a comprehensive understanding about model-based testing, in this chapter, the

methodology and the different phases of RN-AST Pruning framework will be explained in

details.

4.2 Solution Approach

Figure 4.1: Structure Diagram of the framework

The above figure illustrated the proposed structure for RN-AST pruning framework. As seen,

the framework is composed of three parties communicate with each other, the test engineer

who uses the front-end interface to connect to the back-end side that sends data to the Mongo

Database, which is considered the third party.

The back-end side represents and clarifies briefly the different steps for our framework. First,

Multer 1, which is a Node.js middle-ware used to handle the process of uploading the source

code file from the test engineer side. Second, Madge API 2 generates the visual graph of

the dependencies of the uploaded source code. This API has different features that facilitate

the process of determine the different dependencies between the different modules in the

application, finding circular dependencies and providing many useful information. Then, the

babel-parser 3 was chosen to parse the uploaded ECMAScript source code. This parser is

a JavaScript parser used in Babel compiler and it is heavily based on acorn js parser. The

parser produced the abstract syntax tree (AST), which is a tree representation of the abstract

syntactic structure of the uploaded source code. After producing the AST, it is time to

prune this tree and keep only the GUI elements and this is the responsibility of the pruning

algorithm, which will be explained in details in the coming sections. This algorithm will be

applied to the produced AST of the uploaded source, which is the original source code and

the updated version of that code, which will be saved in certain folder in the device. After

pruning the two ASTs, the comparison algorithm starts its job by comparing the pruned

ASTs to find the GUI elements that differentiate between the two versions of the source code.

This algorithm classifies the changes between the two versions into three classifications:

• Update: that means same elements but different properties or values.

• Placements: that identifies the new inserted elements in the updated version not in the

original version.

• Deletions: that tags the deleted elements which are found in the original source code

not in the updated version.

Finally as indicated in step number 7, the paths that contains the changed files are generated

and returned to the test engineer who will use them, which reduces the testing time and

facilitates the testing process.

Below sub-sections describe and explain the different algorithms and steps of our approach in

more details.
1https://expressjs.com/en/resources/middleware/multer.html
2https://github.com/pahen/madge
3https://babeljs.io/docs/babel-parser

33

https://expressjs.com/en/resources/middleware/multer.html
https://github.com/pahen/madge
https://babeljs.io/docs/babel-parser

4.2.1 GUI modeling and representation

As illustrated in the above figure, the test engineer is asked to upload the source code file

of the application, which is the starting point for React native applications, with the use

of Multer middle-ware that adds the file object contains the files uploaded via the form to

the request object. Then it comes the time of building and modeling the structure of the

application by building the component diagram and the dependency graph. This structure,

in addition to its importance in helping people in retaining and recalling information longer

about the software, it also increases their understanding of the application by providing a

general overview about the system. Therefore, everyone has the ability to know the different

components of the system, understand the relationships, dependencies between them and the

impacts of changing one component on the others. It may also increases the collaborations in

improving the system, since providing a visual graph about the system encourages designers

and other team members to discuss, find weak spots and enhance the system [50].

In RN-AST pruning framework, the Madge API -which is a developer tool- was used to

generate the visual graph of our application dependencies. The Madge API was chosen

because it is free, open source, easy to use and it offers the useful needed information like

the different dependency paths of our application files and modules as object, the existence

of circular dependencies and other useful information.

Madge API takes the uploaded file, produces the dependency graph based on the imports in

the file. Then sends the content of the image as Base64 encode representation to the client

side, which shows the image of the dependency graph to the test engineer.

Note that the dependencies illustrated between the components in the dependency graph

indicate that the functioning of one component depends on the existence of other components.

As shown in figure 4.2, each node in the figure is a source file and each directed edge between

these nodes represents the dependency from one file to another. For example, below is a

real example of a dependency graph of a registration form build over React native runs over

Android & iOS. The edges between the files indicates the dependencies between the different

files

Figure 4.2: Dependency Graph Example

34

 https://github.com/pahen/madge

4.2.2 Parse the code, detect the JSX elements & prune the AST

By working with parsers, researchers improve the results for various software engineering tasks

like: code summarizing bug and malware detection. [51].

Code parsing is the process of breaking up the code sentences or group of words into separate

components based on the set of rules and grammars for each programming language [51],

where the output of parsing the source code is represented in a tree-like object usually called

the abstract syntax tree. Parsing plays a key role in the architecture of the compilers, where

it considered the first step in compiling process [52].

Several tools convert source code into a tree structure. In our study, Babel JavaScript Parser

was used to produce the AST, do the source code transformations and extract the dependen-

cies of the source code as an object. Babel parser is heavily based on the Acorn and Acorn-jsx

parsers and the produced AST conforms to the ESTree specification, which is considered the

de-facto community standard for ECMAScript ASTs [53].

Babel parser was chosen as the source code parser because it is the most popular JavaScript

parsers [54] and was used in several studies. For example, Stephan et al [54] used it to provide

the developers with an interactive web-based component hierarchy visualization for React-

based projects. Moreover, Babel parser was used by Huan Lio et al [55] in extracting the code

dependencies between files to visually understand the software architecture and interactively

analyze bad dependencies. Babel parser was also used to check the code validity and try to

fix small syntax issues while assessing the real-world security impact on modern websites [56].

Technically, most parsing libraries provides a way to traverse the produced AST that means

the ability to visit the different nodes of the tree in order to perform different actions. In

RN-AST pruning framework, the chosen parser - Babel parser- offers the Babel-traverse to

visit the AST nodes and detect the JSX elements.

NPM was used to install the babel-parser as below 4.3:

1 npm install --save -dev @babel/parser

Figure 4.3: Install Babel-parser

The parser was called in the code to parse the content of the different dependencies files

of the uploaded file as below 4.4:

35

 https://babeljs.io/docs/en/babel-parser
 https://github.com/acornjs/acorn
 https://github.com/acornjs/acorn-jsx
https://github.com/estree/estree

1 const babelParser = require("@babel/parser");

2

3 let ast = babelParser.parse(buffer.toString (), {

4 sourceType: "module",

5 plugins: [

6 // enable jsx and js syntax

7 "jsx",

8 "js",

9],

10 });

Figure 4.4: Babel-parser in the code

Both source codes of the original code- which is the uploaded file- and the updated code

-which is stored in specific folder in the device- are being parsed using the Babel-parser to

produce the original AST and the updated AST. These ASTs are pruned to keep only the

exported JSX elements for each source code. These JSX elements are the elements that are

shown on the user interface of the application. Doing so helps in finding the GUI changes

between the two versions of the code.

The steps for the proposed algorithm for pruning the AST of the source code answers the first

question in the research questions section 1.4 and it can be described as shown below:

Pruning algorithm notes: This study based on the idea of using static analysis to parse

the JS source codes and check if their exist any changes in the exported JSX elements between

the two versions of the source code.

Since the developers using React native can write JavaScript code in different patterns and

styles, there exist several ways to write the export, which is used when we create a JavaScript

module and want to export its functions, primitive values or objects to be used in other

modules using the import declarations [57]. The basic idea behind imports and exports is

to exchange contents between several JavaScript files and to help in splitting the code into

multiple files, so achieving the modularity in our design.

There are two types of exporting in React native applications:

• Named Export (Zero or more exports per module) that are used when building a com-

ponent or components that are imported many times.

36

• Default Export (One per module) that exports a single class, function or primitive from

a script file.

RN-AST Pruning framework addresses the Default export type that are created by including

a default tag in the export. Using default export allows the developer to have only one export

in the file.

In general, there exist many forms of using "default export" in the modules based on the type

of the exported components.

Basically, in the world of React native, components can be written using functions or classes.

Just like their names indicate, a functional component is just a plain JavaScript function that

returns JSX. However, a class component is a JavaScript class that extends React.Component

which has a render method.

Below are screenshots illustrated the different expressions of exporting in React native that

cover the different components types.

1 function App() {

2 // function body

3 }

4 export default App;

Figure 4.5: Export Function

1 const App = () => {

2 // body

3 }

4 export default App;

Figure 4.6: Export Variable

1 class App extends Component {

2 // body

3 }

4 export default App;

Figure 4.7: Export Class

37

Another expression is to declare function, class components directly in the export default

like below: Functional components can be written in two ways:

1 export default class App extends Component {
2 render () {
3 // render body
4 }
5 }

Figure 4.8: Export Class Directly

regular functions, which can be written as:

1 export default function App() {

2 // body

3 }

Figure 4.9: Export Regular Class Directly

Or arrow functions as below:

1 export default App = () => {

2 // body

3 }

Figure 4.10: Export Arrow Class Directly

Each pattern of these patterns produce different AST structure. Our algorithm detects

JSX elements of all above patterns used by the developers.

38

Algorithm 1 AST Pruning and Detection Algorithm
Input: The AST of the source code as array (produced by babel parser)

Output: Pruned AST only with JSX elements shown on the screen returned as array

Steps:

1. Get the Abstract Syntax Tree of the uploaded source code from the babel parser.

2. Use babel-traverser to traverse the AST nodes and especially the ExportDefaultDec-

laration node to check the type of default export.

3. Get the first rendered GUI element on the screen based on the used export default

pattern:

(a) When export function as default export after the function declaration, then the

algorithm get the name of the exported function and traverse all the FunctionDe-

calaration nodes until the name of the function in the node matches the name of

the exported function. Then the first rendered node is the first JSX element stored

in the ReturnStatement node in the body of the FunctionDeclaration node.

(b) When export variable as default export after the variable declaration, the steps

of getting the first rendered JSX element are as above steps. However, instead

of traversing the FunctionDeclaration nodes, the algorithm traverses the Vari-

ableDeclaration nodes, check if the variable name matches the exported, then

get the first JSX element from the ReturnStatement node in the body of the

matched VariableDeclaration node.

(c) When export class as default export after the class declaration, the steps of getting

the first rendered JSX element are as above steps. However, instead of traversing

the FunctionDeclaration or VariableDeclaration nodes, the algorithm traverses the

ClassDeclaration nodes, get the different class methods, then get the first JSX

element from the ReturnStatement node from the render method.

(d) When export regular syntax function as default export, the first JSX element

would be from the ReturnStatement node from the body of the FunctionDec-

laration node.

(e) However, when export arrow syntax function as default export, the algorithm

get the ReturnStatement node as the first JSX element from the body of the

arrow function.

39

Note: JSX element is syntax extension to JavaScript with the purpose of designing a more

concise and easy-to-understand syntax that describes what UI element should look like.

4.2.3 Comparing the JSXElements tree of the original and updated source

code

After producing the pruned ASTs of the original source code and the updated version of the

source code, it’s time to answer the second question 1.4 and compare these two ASTs to find

the set of differences and this is the aim of this phase.

This part is not just getting the string differences between the two versions of the code, instead

the static analysis is used to detect the source code changes between the different versions of

the application code.

Generally, React is considered one of the fastest JavaScript frameworks. Reconciliation algo-

rithm is considered one of the several reasons for this distinction. This algorithm deals with

figuring out how to update the UI of the application effectively and without any delays, by

optimizing the process of comparing the current DOM tree and the virtual DOM tree -that

contains the new DOM tree with new states and props- to determine which parts need to be

changed on the actual DOM.

In our proposed algorithm the strategies followed in the diffing algorithm in React (reconcili-

ation) were taken into consideration while comparing the two pruned ASTs.

As mentioned in the previous step, the Babel-parser was used to produced the AST of the

uploaded source codes, and by following the pruning algorithm steps, we end up with two

pruned ASTs. Below is the pseudo code for the proposed algorithm of comparing the two

pruned ASTs.

40

https://reactjs.org/docs/reconciliation.html
https://reactjs.org/docs/reconciliation.html

Algorithm 2 Diffing Algorithm
Input: The pruned AST of the original source code (old AST) and the pruned AST of the

updated source code (new AST)

Output: The deletion elements array, the placement elements array and the updated elements

array.

Steps:

1: procedure compareTwoAsts(oldAST , newAST , update, placement, deletion)

2: placement← ∅; deletion← ∅; update← ∅

3: if oldAST = ∅ && newAST = ∅ then

4: return empty

5: else if oldAST = ∅ then

6: placment← newAST

7: else if newAST = ∅ then

8: deletion← oldAST

9: else

10: deletedIds = oldIds.filter(x =>!newIds.includes(x));

11: intersectionIds = newIds.filter(x => oldIds.includes(x));

12: placementIds = newIds.filter(x =>!oldIds.includes(x))

13: deletion← deletedId′sobject

14: placement← newId′sobject

15: for each intId ∈ 〉ntersectionIds do

16: oldObj = oldAST.find(x => x.props.id === i);

17: newObj = newAST.find(x => x.props.id === i);

18: sameType = newObj.name == oldObj.name

19: if sameType && (!lodash.isEqual(oldObj.props, newObj.props) || oldObj.value! =

newObj.value) then

20: update.push(oldObj);

21: end if

22: if newObj && !sameType then

23: placement.push(newObj)

24: end if

25: if oldObj && !sameType then

26: deletion.push(oldObj)

27: end if

28: repeat for children

29:

30:
41

The diffing algorithm was represented using the psuedo code. Below steps clarify the

pseudo code in more details.

1. If the old AST and new AST are empty then return empty arrays

2. If the old AST is empty then push the new AST to the placement array and return it

3. If the new AST is empty then push the old AST to the deletion array and return it

4. Iterate at the same time over the two pruned ASTs starting from the topmost element

in the AST.

5. The algorithm generates an id for each exported element -if not exists one- then compare

the ids of the element. The elements of the new id’s are added to the placements array,

while elements with the deleted id’s are added to the deletion arrays.

6. According to the elements with similar id’s, the algorithm always starts comparing them

(a) If the old element and the new element have the same type, the algorithm looks

for the proprieties and the attributes and use Lodash library to do the comparison,

and if any difference exists, the old element is pushed to the updated array.

(b) If both have different types and there is a new element, this means pushing the

new element to the placement array, which contains the new created elements. In

case there is an old elements, this element is pushed to the deletion array that has

the elements to be deleted.

By default, when recursing on the original elements and the updated elements, the algorithm

just iterates over both lists of elements at the same time and check for differences.

For example, when adding an element at the end of specific view, finding differences between

the original tree and the updated tree works perfectly.

42

https://lodash.com/

Figure 4.11: Original View

Figure 4.12: Updated View

The algorithm will match the two <Text> Try editing me! </Text> and then insert the

<Text>This is the new added element</Text> element.

However, inserting a new element in the beginning of the view as figure below 4.13 cause a per-

formance issue, where the algorithm won’t realize that the <Text>Try editing me!</Text>

element has only changed its place. Therefore, to solve this problem the algorithm supports

the id attribute, which is unique per element, where it checks the id of the two elements, if

they differ, the algorithm checks if the original id exist in the original tree, which is usually

not hard process and based on that it move toward other elements in the updated tree and

the original tree.

Checking the id attributes enhance the comparing algorithm performance and provide the

test engineers with a more clear results.

43

Note that the algorithm generates an id attribute for elements that has not an id. In order

to generate the id, it hashes the type of the element and the index. Therefore, ends with an

element with unique id among its siblings.

Figure 4.13: Updated View

Note that the proposed framework is able to detect the following changes:

• Adding new elements to the screen

• Removing elements from the screen

• Updating the text or proprieties of any element in the screen

4.2.4 Building the different paths of the dependency graph

As mentioned before, the dependency graph aims to provide a general overview about the

system and the dependencies between the different files and modules in a clear and uncom-

plicated manner.

Technically, dependency graph is a collection of entities called nodes; in our case these nodes

represent the different files in our system. Generally, nodes are connected by edges that man-

age the relationship between them [58]. Going through these nodes produces the different

paths of the dependency tree starting from the first node, which is the root, and ending with

leaves, which are the nodes with no dependencies.

In RN-AST pruning algorithm, the idea of getting the different paths of the dependency graph

based on start traversing the graph using the depth-first-search (DFS) technique. The DFS

algorithm starts at the root node and explores as far as possible along each branch before

44

backtracking to the parent.

In order to show the list of paths and the different changes of each node in the path, we have

created a tree component, where each tree path represents the sequence of nodes (files) to be

tested by the testers of the application. Each node has sub nodes that classify the changes

into three types. If the file has changes between the two versions of the application it will be

colored with red to facilitate the process of tracking changes. Below 4.14 is an example of the

list of files to be tested because of a change in the red colored file.

Figure 4.14: Path to be tested

In the front-side and to show the changes in the files as categories, the framework used

the React D3 Tree component to represent hierarchical data. It is expected to pass a JSON

object with specific format to build this tree. Below figure 4.15 illustrated an example of the

passed JSON object to this component, where the component takes the name and children of

each node.

45

https://www.npmjs.com/package/react-d3-tree

Figure 4.15: Data passed to React D3 Tree

After passing the data to the component, it starts building the tree. Figure 4.16 shows the

tree of the updated elements in a changed file after passing the changes to the React-d3-tree

component

Figure 4.16: Path to be tested

4.3 Code Implementation Strategies

4.3.1 Modularization

A design pattern concerns in splitting the code into multiple files (modules) to facilitate the

maintaining process, increase the code reusability and to organize the code, which provide

46

scalable applications. Each module has functions or classes that handle a specific functional-

ity. The functions in one module can be imported and called in other modules, which reduce

the code redundancy and make it easier to add new features or edit and remove the existing

features.

In the proposed framework, the functions that represent the different algorithms were sep-

arated in modules that were imported in the main source code to achieve the modularity

pattern. Modularity pattern helps in implementing a scalable Nodejs project by building a

reusable, easy to maintain and test modules.

As shown in the figure below 4.17, the different modules of our proposed framework were put

in a folder called functions. These functions were exported using the module.exports which

makes this function accessible outside of the module wherever we require that module. To

use this module, the require() were used to import it in another module. For example, in

pruneAst.js module, the detectJSXelements.js was imported using the require as below

4.18

Figure 4.17: Functions in RN-AST Pruning framework

Figure 4.18: Importing modules

4.4 Evaluation

In order to understand the extend by which the proposed framework help and guide testers

while testing React native applications, a user evaluation was conducted to evaluate the user

experience and acceptance and measure the effectiveness of the framework in detecting and

finding the UI differences between the original and updated source codes. The details of this

47

user evaluation follows.

4.4.1 Application Under Test

In general, the application under test is meant to validate that the aim of the proposed

framework is feasible, viable and applicable in practice. Particularly, in this study, it aims to

ensure that the framework achieves its goals in detecting the differences between the original

source code and the updated version of the code. Moreover, provides the test engineers with

a list of paths that may be affected by these changes.

The application is developed using expo framework, which is a set of tools and services built

for React native that allows us to build a natively-rendered mobile applications to run on iOS

and Android, so single code base for different platforms.

Once the application is built, a QR-code will be generated. Therefore, to run the application

on Android or iOS, the Expo Go application need to be installed on the mobile phone and

then connect the phone to the same wireless network as your computer. Expo GO facilitate

the process of running the application on an Android or iOS devices without the need to write

additional code snippets.

Basically, React native has a number of essential and ready-to-use core components to start

building the application. Below tree diagram 4.19 illustrated the common core components

that are covered by the proof of concept application we have implemented.

48

Figure 4.19: Covered core components

The developed application is made of a list of pages, each page consists of one or more core

components. These pages are treated as modules. Thus, importing one module in another

module produces the dependency between these modules. Changing any of these files may

affect the main file and this is what the proposed framework is going to detect.

Below is a set of screenshots from the application

Figure 4.20: Main page of the application

49

Figure 4.21: Facebook Page

Figure 4.22: Registration Form Page

50

Figure 4.23: Stop Watch Page

Figure 4.24: BMI Page

51

Figure 4.25: World wide news

4.4.2 Experiment Setup and Procedure

This chapter describes in details how the experiment was done, the procedure followed to

collect data and people participated in the study.

Participants

Basically, the evaluation of the proposed framework was done with the help of six volunteers.

Two of them with a strong React native programming background and the others are beginner

developers in React native, but a comprehensive tutorial was given to them in order to teach

them the basics and increase their knowledge in using and programming with React native.

Participants were asked to fill a similar questionnaire to help in evaluating the framework

effectiveness. The first section in the questionnaire aims to collects data about their qualifica-

tions and experience in mobile development. Below table illustrates the general characteristics

of the participants as indicated from the collected data. In general, participants interact with

the RN-AST Pruning framework using a web interface implemented using React Library. Re-

sults and Errors that were generated on the server were sent to the client and displayed to

the user.

The proposed framework was built as a web tool to facilitate the process of getting started.

It was uploaded to the GitHub repository to simplify the access to the tool from anywhere

and anytime. All you need is to install the dependencies and then just get started.

52

https://reactnative.dev/docs/tutorial
https://github.com/randibrahim/AST-Pruning

What is the
highest qual-
ification you
have?

How many
years experi-
ence do you
have in mobile
app develop-
ment?

How familiar
are you with
React native
framework?

How many
mobile appli-
cations do you
build using
React native?

How would you
rate yourself in
building a user-
friendly mobile
application?

Master Degree More than 6 years Familiar 1-3 applications Good
Bachelor Degree 1-3 years Quite Familiar 1-3 applications Very Good
Bachelor Degree 1-3 years Familiar 1-3 applications Good
Bachelor Degree 1-3 years Not Familiar None Very Good
Bachelor Degree 1-3 years Quite Familiar 1-3 applications Very Good
Bachelor Degree 1-3 years Quite Familiar 1-3 applications Poor

Table 4.1: Participants Characteristics

The output sent between the server and the client side was implemented as a JSON object as

many web applications use this format for data transmission.

Figure 4.26: Assign JSON Object

Experiment Steps

Below are the steps that were followed to help in evaluating RN-AST pruning framework.

1. The participants were introduced to the framework by reading an instructional tuto-

rial document 4 to reduce the bias between the different participants, to demonstrate

the main aim of this framework and the steps of using it with an explanation of the

framework’s outputs.

2. Multiple online sessions were done with the participants to introduce them with the

framework.

3. On completion the learning step, the participants were asked to do some GUI changes

to the application under test 4.4.1, these changes include adding new element, deleting

or updating exist elements. Note that : four participants used their own computers

to access the application and the others used my computer because they don’t have
4https://github.com/randibrahim/AST-Pruning/blob/main/InstructionalTutorial.pptx

53

https://github.com/randibrahim/AST-Pruning/blob/main/InstructionalTutorial.pptx

the right environment to run the mobile application and do the changes on the original

source code.

4. The changes done by the participants were run to ensure that there were no run-time

issues

5. Their changes were cloned and copied to the updatedFiles folder in the proposed frame-

work.

6. RN-AST pruning framework starts its job by calling the Madge API to build the de-

pendency graph of the original source code, produce the AST by parsing the different

versions of the source code using Babel parser, prune the AST to keep only the GUI

expressions and finally compare the pruned AST’s to check if the file has changes before

building the paths that contain the files with changes.

7. Upon finishing the experiment and showing the results to the participants and making

sure that the tool detects their changes, a matching questionnaire was filled with each

participants.

Participants Experiments

As mentioned above the participants were asked to do some GUI changes on the application

under test in order to test the core components in React native. These changes include adding,

deleting or updating GUI elements in the application. Below are some of the changes that

were done by the participants.

Participants #1 & #2

The 1st and 2nd participants were introduced to the framework and read the instructional

tutorial to get the basic idea of the application under test and RN-AST Framework. They

used my own laptop to do some code changes on the application. Here are a list of some of

their changes on the code

• Participant 1

– Add a new Text element nested inside TouchableOpacity element.

– Update the value attribute of a Text element.

– Delete a View element, which has different elements inside.

54

– Remove the animation type attribute for Modal element.

– Change the color attribute of a Button element and the disabled attribute of a

TextInput element and a Switch element

• Participant 2

– Add a new image element

– Change the color attribute of a Text element

– Add new TextInput element and delete a TextInput element

– Change the value attribute of a Button element

Below table 4.2 illustrated the covered elements by both participants.

Element Covered

Text 3

Switch 3

Image 3

View 3

TouchableOpacity 3

Button 3

TextInput 3

Table 4.2: Covered Elements by participants # 1 & #2

Participant #3

The 3rd participant was introduced to the framework online. The application under test was

uploaded to the GitHub platform in a new repository and the participant was able to install

the different dependencies of the application under test and run it on his PC.

The participant was asked to do the GUI changes on the code. A new branch 5 was created

on the repository that contains the new version of the code. These changes were cloned in

my side and the framework was tested on these changes. His changed focused on covering the

three categories of changes (updates, placements, deletion). Below are a elements that were

covered by this participant.

Participant #4

The 4th participant was the most cooperative among them. He was introduced to the frame-

work remotely and he was able to access the application under test using GitHub platform.
5https://github.com/randibrahim/reactNative-App/tree/change-1

55

https://github.com/randibrahim/reactNative-App/tree/change-1

Element Covered

Text 3

View 3

TouchableOpacity 3

Pressable 3

TextInput 3

Table 4.3: Covered Elements by participant # 3

He ran the application on his side and did some changes over the code. Although the poor

experience in using React native, he was able to cover these elements by the changes he did

on the code.

Note: His changes were uploaded to Google drive 6. These changes were cloned and tested

by RN-AST Pruning framework to ensure that the changes were detected.

Element Covered

Text 3

View 3

TouchableOpacity 3

Pressable 3

TextInput 3

Table 4.4: Covered Elements by participant # 4

Participant #5

According to the 5th participant, she was able to access the application under test through

GitHub platform. She installed the application dependencies, built the application and started

the source code changing step. Below are the list of changes she did.

• Change the color attribute of the Text element

• Add border attribute for a Text element

• Change the width and height attributes of the Button element

• Add border color for a View element

• Delete a TextInput element

• Add a new TextInput element
6https://drive.google.com/u/0/uc?id=1lUEJIUPazyrU0Oem4NNeefWEFO32CnMh&export=download

56

https://drive.google.com/u/0/uc?id=1lUEJIUPazyrU0Oem4NNeefWEFO32CnMh&export=download

• Add an item to the SectionList element

Element Covered

Text 3

View 3

SectionList 3

Button 3

TextInput 3

Table 4.5: Covered Elements by participant # 5

Note: His changes were uploaded to Google drive 7. These changes were cloned and tested

by RN-AST Pruning fr amework to ensure that the changes were detected.

Participant #6

The 6th participants followed the steps from the official documentation of React native to

setup the development environment to build the application under test on his own laptop.

After running the application, he did some changes on the GUI of the application. Below are

the list of these changes.

• Change the width and height attributes of the Image element

• Remove the Button element and add new one

• Add new TextInput element

• Add border attribute to the Text element

• Add Switch element

• Add new Text element

Note: Her changes were uploaded to Google drive 8. These changes were cloned and tested

by RN-AST Pruning framework to ensure that the changes were detected.

In addition to the above changes done by the participants, from my own side an extensive

test were done to test the tool and ensure that all core components that were not covered by

the participants were covered by the test scenariOS that I made.
7https://drive.google.com/file/d/1xZQINiyo5Pqlb1b0Jc7g8d8pJb43URSx/view?fbclid=

IwAR0jERb4rI8-WOQfiVBnIzzii3pU67Miem4t0CR1XKyOBjakF1VnHU1QrQQ
8https://drive.google.com/file/d/1AyzTOXtPi3m0_G1OCzFj6zwuOiBIPupc/view?usp=sharing

57

https://drive.google.com/file/d/1xZQINiyo5Pqlb1b0Jc7g8d8pJb43URSx/view?fbclid=IwAR0jERb4rI8-WOQfiVBnIzzii3pU67Miem4t0CR1XKyOBjakF1VnHU1QrQQ
https://drive.google.com/file/d/1xZQINiyo5Pqlb1b0Jc7g8d8pJb43URSx/view?fbclid=IwAR0jERb4rI8-WOQfiVBnIzzii3pU67Miem4t0CR1XKyOBjakF1VnHU1QrQQ
https://drive.google.com/file/d/1AyzTOXtPi3m0_G1OCzFj6zwuOiBIPupc/view?usp=sharing

Element Covered

Text 3

Switch 3

Image 3

Button 3

TextInput 3

Table 4.6: Covered Elements by participant # 6

The Questionnaire

In our study, the questionnaire method was used to collect, obtain, summarize useful informa-

tion from the participants about the proposed framework to support and help the evaluation

process.

The questionnaire 9 was made with the help of Google Form and it followed the positive

design approach, which was introduced by Sauro et al [59] who suggest including items with

positive and negative wordings to reduce the responses biases, help analyzing the results faster

and avoid accidental errors. The questionnaire questions can be found in appendix A. It has

three sections with a total of 16 questions, 9 questions with 5 point Likert scale ranging from

Strongly Agree to Strongly Disagree, 2 open-ended questions to capture their opinions of

using RN-AST pruning framework in testing React native Applications, and the remaining

questions to capture their background and experience in developing mobile applications.

Time Efficiency

Another factor that helps in evaluating RN-AST Pruning framework is the time required per

each participant to do the different tasks. Below table 4.7 illustrated the different tasks and

the time it took to finish by the different participant.
9https://github.com/randibrahim/AST-Pruning/tree/main/Questionnaire

58

https://github.com/randibrahim/AST-Pruning/tree/main/Questionnaire

Run the

application

under test

Do the code

changes

Run RN-

AST Prun-

ing frame-

work

Understand

the frame-

work result

Fill the

question-

naire

#1 - 7-8 minutes 5-10 seconds 7-10 minutes 1-3 minutes

#2 - 10-15 minutes 5-10 seconds 10-15 minutes 1-3 minutes

#3 3-4 minutes 20-25 minutes 5-10 seconds 10-15 minutes 1-3 minutes

#4 2-4 minutes 15-20 minutes 5-10 seconds 7-10 minutes 1-3 minutes

#5 5 minutes 30-40 minutes 5-10 seconds 15-20 minutes 1-3 minutes

#6 5-7 minutes 40 minutes 5-10 seconds 20-25 minutes 1-3 minutes

Table 4.7: Time factor details

As indicated in the above table, all participants took 2-7 minutes to run the application

under test on their own devices. They were able to access the source code of the application

through GitHub platform, where the application was uploaded. They download the applica-

tion as zip file, follow the instructions in the README file, install the required dependencies

and then start the application. Note that the first two participants used my own laptop to

run the application under test and do the code modifications.

Because the familiarity with React native varies between the different participants, the time

required them to do the code modifications differs. For example, those with less familiarity

took more time to do the code changes compared with those who have experience using React

native. However, generally the participants took maximum 40 minutes to do the changes that

were classified into adding, deleting and updating GUI elements.

According to the time that was taken to transfer the code modifications and run RN-AST

Pruning framework. As seen in the table, the framework took about 5-10 seconds. During

these seconds, the modifications that were done by the participants were cloned manually to

the framework, and then the framework start applying its algorithms. The framework took

about 1-2 seconds to detect the code modifications, classify these changes, build the list of

paths (files) that may be affected due to these modifications and show results to the partic-

ipants. The time taken by the framework was satisfied to the participants and they showed

positive impacts.

Moving to the step of understanding and discussing the framework results. The discussion

time took between 7-25 minutes for each participant. During this time, the participant made

59

sure that the framework detected the changes and modifications he/she did on the source

code. After that, they start expressing their opinion about the way of showing the results to

them.

Finally, the participants took maximum 3 minutes to fill the questionnaire and wrote their

opinion about the framework.

In general, the participants were satisfied with using RN-AST Pruning approach, the results

were easy to understand but they suggested few ideas to enhance the way of showing the

modifications and the list of affected files.

60

Chapter 5

Results and Discussion

In this chapter, the results are discussed in depth based on the evaluation chapter 4.4.

5.1 Measurement Results

As mentioned above, the questionnaire method was used to collect data from the participants.

Below the results of the questionnaire are presented in an easy way to understand and act on

them.

At the end of the data collection process, 6 volunteers participated in the survey. The partic-

ipants were varied in term of highest qualifications and in their experience in mobile develop-

ment. Results shows that one of them has a master degree and the other have the bachelor

degree.

Figure 5.1: Highest Qualification

According to their experience in mobile development field, results indicate that only one

of them is senior with more than 6 years in this field, one of them has no experience and the

other participants are juniors with only 1 to 3 years experience.

Figure 5.2: Mobile Development Experience

As indicated in figure 5.3, all participants built 1-3 mobile applications except one of them

has not build any mobile application.

According to their familiarity with React native, one of them is not familiar with this frame-

work and the other have heard about it as illustrated in figure 5.4, where 1 in likert-scale

means not familiar and 5 means familiar.

Figure 5.3: Number of build applications

62

Figure 5.4: Familiarity with React native

Since RN-AST Pruning framework aims to help GUI testing and detect the GUI changes

in React native applications. It was supposed to ask the participants about their experience

in building user-friendly mobile applications. Results show that half of them have a very good

experience in building user-friendly mobile applications, one of them is poor in this field and

the experience of the remaining two is fair.

Figure 5.5: Build user friendly applications

The second section in the questionnaires aims to evaluate the usability of using RN-AST

Pruning framework. As indicated in figure 5.6, participants vary in determining the usability

of RN-AST Pruning framework, half of them were neutral and the other half found it easy to

use.

63

Figure 5.6: Easy to use RN-AST pruning framework

In addition, two participants found it easy to make code changes and the other were

neutral in determining the ease of making changes on the original source code as illustrated

in figure 5.7

Figure 5.7: Easy to make changes on original source code

As for the efficiency of RN-AST Pruning framework, almost all participants agreed that

the proposed framework was able to provide them with the affected files that needs to be

tested as shown in figure 5.8, where 5 in likert scale means totally agree

64

Figure 5.8: Provide the affected files

The results provided by RN-AST Pruning framework as illustrated in figure 5.9 were

satisfying for more the half of the participants and the other participants were neutral in

determining their satisfaction with the framework results.

Figure 5.9: Satisfy with the results

Despite all, almost all participants believe that the idea behind this framework is useful

and worthy except one participant was neutral in this point.

65

Figure 5.10: useful of RN-AST Pruning framework

At the end of the questionnaire, participants were involved in discussion about what may

be added to the framework to enhance its efficiency. One of them suggests adding the list

of deleted files and new added files -if any-, his suggestion was taken into consideration and

the code was modified to reflect his suggestion. This added a new feature to the framework,

where in addition to showing the paths of reflected files, it shows the new and deleted files if

exists. Moreover, they suggest enhancing the way the changes are illustrated, so the react-

d3-tree was used to draw the changed element as a tree. Below are their opinions about the

framework:

• "It helps the computer engineer to identify all the changes that have been made to the

source code and also makes it easier for programmers who work in companies to complete

the work in less time, less effort and higher efficiency because it explains everything that

has been changed on the project they are working on and displays all details"

• list of files need testing is easy to have

5.2 Discussion

5.2.1 How effective is the build framework in detecting changes and results

that satisfy the test engineers?

After collecting the results from the participants, below points can be shown:

• All participants agreed that RN-AST Pruning framework provides them with the list of

affected files. However, two participants were not satisfied with the way the results are

shown, and they found it hard to understand.

66

• RN-AST Pruning framework idea is useful and can help test engineers by reducing the

time and effort required to do the testing process by providing them with the affected

files and paths.

From these two consideration the fourth research question 1.4 can be answered positively to

indicate the efficiency of RN-AST Pruning framework idea and implementation.

5.2.2 How to detect the GUI elements and prune the GUI model?

According to the first research question presented in the beginning of the study 1.4, RN-AST

Pruning framework provides an algorithm that is responsible for parsing the source code and

detect the JSX elements. This algorithm is explained in details in 4.2.2, where the basic idea

is to use babel parser to parse the React native source code and produce the Abstract syntax

tree, then uses the babel-traverse to traverse this tree representation and detect the exported

JSX elements that is used to build the user interface.

Applying this algorithm to both versions of the source code produces two pruned abstract

syntax trees that are then compared to find the GUI changes between the original source code

and the updated source code.

5.2.3 How to calculate and classify the code differences and changes be-

tween the last two versions of the application?

RN-AST Pruning framework extends the previous algorithm and provides another algorithm

4.2.3 that is responsible for comparing the two pruned AST to answer the second research

question 1.4. The algorithm adapts the heuristics of the reconciliation algorithm followed

in react while updating the DOM. When finding the difference, the algorithm classify each

difference into one of three types of classifications. The change can be update if the properties

or the value of the element is changed between the two versions of the code, placement if the

element is new and not exists in previous version of the code, or deleted if the element is not

in the new version of the code.

5.2.4 How to build the list of paths that contains the changes file?

Finally, the framework answers the third research question by the algorithm 4.2.4 that tra-

verse the dependency graph using the Depth First Traversal technique and check if each file

67

has changes before embedding it into the path. The framework also uses the react-d3-tree

library to draw the tree hierarchy of the changed files to help test engineers in tracking the

changes.

5.2.5 Comparing with other studies

As mentioned above, the idea behind RN-AST Pruning framework is inspired from Reis and

Mota approach [18] in aiding the exploratory testing with pruned GUI model to show the im-

pacted regions by the internal code changes. In their approach the authors used static analysis

using Soot 1 framework to produce the GUI model of the application that is represented using

a direct graph build of small parts such as: Component, Window and Events. In order to

prune the GUI model and keep only the regions that may be exercised, they used the static

analysis to detect the new and modified methods, then they iterated over all events in the

GUI model and check if the methods reached by each event belongs to the changed methods,

if so they then build the path that arrive at the event from the starting window. While in

RN-AST Pruning framework, the babel parser was used to do the static analysis and produce

the AST representation of the code that represent the model of the mobile application in our

case. The AST is made of nodes, where each node represents a construct occurring in the

source code. The babel-traverse is used to iterate over the different nodes in the AST and

to build the pruned model that contains only the GUI elements of the application. Since the

framework intends to find the impacted regions of the code, then the pruned model for the

original source code and the updated version of the source code are compared with each other

to determine the updated, new and deleted methods between the two version. Once these

methods are known, RN-AST Pruning framework start building and generating the paths

from the dependency graph. These paths contains the files that depends on the impacted files

and may be affected due to the changes in the source code.

Reis and Mota approach and the RN-AST Pruning framework approach aim to aid the test

engineers in the testing process by providing them with the impacted regions due to the

changes between the different versions of the code. Therefore, maximize the chances to find

bugs and errors within a short period of time.
1http://soot-oss.GitHub.io/soot/

68

http://soot-oss.GitHub.io/soot/

5.2.6 Threats to Validity

In this section, the factors that may affect the validity of our results will be discussed.

External Validity

External validity can be defined as the extend to which the results of the study can be

generalized to other environments and situations [60].

In our study, the external threat caused because of the small number of participants that

tested the framework. This is due to the lack of people who know React native and able to

help us in evaluating the framework, although large sample of developers and test engineers

were asked to participate in the evaluation process, but only 6 participants were cooperative

and helped in testing the framework.

Internal Validity

Internal validity explains the cause-and-effect relationships and to what extent the changes

in the dependent variable are caused by manipulations to the independent variable [61].

According to the study’s findings, RN-AST Pruning framework provides the test engineers

with the list of affected paths due to the changes in the source code, which facilitate the

testing process and reduce the paid time and effort.

Another study finding is that RN-AST Pruning framework has significantly reduce the number

of test cases to test the mobile application.

5.2.7 Limitations

As explained before, RN-AST Pruning framework aims to help test engineers in testing mobile

application written using React native framework by detecting GUI changes between the

original version and the updated version of the source code, and building the affected path

of files that need to be tested. Therefore, less test cases to run, less testing time and more

efficiency and productivity.

As indicated in 4.4.1 RN-AST Pruning framework covered the core components in React

native, but the increase of using mobile applications and the diversity in application domains

may possibly reveal other components to be included in the framework.

One of the feature that can be applied in React native and is not covered by RN-AST Pruning

framework is the conditional rendering which means displaying components depending on

69

different conditions. Below figure 5.11 illustrated an example to conditionally render a small

block of text.

Figure 5.11: Conditional Rendering

Conditional rendering can be applied often in the following scenariOS [62]:

• Rendering external data from an API.

• Showing or hiding elements based on a state variable.

• Toggling application functionality.

• Implementing permission levels.

• Handling authentication and authorization.

In general, there exist several ways to write a conditional rendering in React native [62]. Each

way has its own AST format, so due to the lack of time it was hard to cover these ways and

cases in RN-AST Pruning framework.

iOS limitation

As mentioned above, the application under test were build using Expo not React native CLI

due to the obvious strikes that the windows users will face when using the React native CLI,

where you need both Android and iOS emulator. This means the as a developer you need to

have both Android Studio and XCode to run the application, which are available exclusively

on the Mac OS.

In general, the extra configurations required to use React native CLI, the need to be familiar

with Android Studio and XCode and the needs to have Mac OS leads to the decision of

using Expo CLI to build the application. When usign EXPO CLI as a developer you only

need s recent version of Node.js and a phone or emulator. When run the application, Expo

70

produces a QR code when scanned using an Android device or iOS device the application will

be run on these devices smoothly, EXPO CLI facilitate the process of building and testing

cross-platform applications.

71

Chapter 6

Conclusion and Future Work

React native framework is moving toward stream, it has been increasingly gaining adoption

in building mobile applications. Providing robust React native application become essential

especially in light of the great competition between developers and companies in providing

competitive applications that satisfy the users needs and expectations. Therefore, the testing

process of these applications to ensure its effectiveness is crucial and very important.

In general, model-based testing proved its efficiency in testing cross-platform applications.

However, because of the increased complexity, model-based technique becomes difficult to

conduct. Therefore, in this study, RN-AST Pruning framework was proposed. The basic idea

behind this framework is to enhance the testing process, help test engineers by reducing the

number of test cases to run, therefore, reduce the required time and effort needed to complete

the testing process. The framework works on pruning the abstract syntax tree generated by

code static analysis to keep only the GUI elements. Then compare the pruned AST of the

original source code with the pruned AST of the updated version of the source code. GUI

changes are categorized into updates, placements and deletions. The framework then build

the paths that contains the changed files. Each path has a list of changed files or the files

that may affected due to the dependency with that file. Thus, reducing the number of tested

files and the number of test cases to run.

In previous chapters, cross-platform development and model-based testing were discussed in

more details. A comprehensive overview about static analysis and React native framework

were provided. Moreover, the previously proposed and published papers and studies related

to our field were summarized and synthesized to give an idea about what has been conducted

in the previous decades. Finally, the different phases of RN-AST Pruning framework were

explained in more details to help gaining a comprehensive understanding about the framework.

A proof-of-concept mobile application was implemented and presented to be used by a group

of mobile application developers. In addition, the framework was evaluated using a case study

evaluation conducted on a group of 4 developers with different qualifications and experiences.

Participants used RN-AST Pruning framework to detect their changes on the proof-of-concept

mobile application and to list them the affected files that need to be tested by the test

engineers. Results show that the framework was able to provide them with the changes they

have applied to the mobile application code. Moreover, they praised the framework and

believe that it is useful in helping test engineers in their testing process.

Due to the lack of time and to improve this work, some next steps need to be conducted in

the near future:

• Increase the number of covered components

• Support the conditional rendering

• Enhance the framework interface to more user-friendly theme.

• Evaluate the framework with the help of larger sample of developers and testers.

• Integrate our results with model-based GUI test case generation tools to get more ac-

curate and systematic results.

73

Appendix A

Questionnaire

About you

1. Gender

� Male

� Female

2. What is the highest qualification you have?

� High School

� Diploma

� Bachelor Degree

� Master Degree

� PhD

3. How many years experience do you have in mobile app development?

� No experience

� 1 - 3 years

� 4 - 6 years

� More than 6 years

4. How familiar are you with React Native framework?

� Unfamiliar � Slightly Unfamiliar � Neutral � Slightly Familiar

� Familiar
5. How many mobile applications do you build using React Native?

� None

� 1 - 3

� More than 3

6. How would you rate yourself in building a user-friendly mobile application?

� Poor � Fair � Average � Good � Excellent

RN-AST pruning Evaluation

7. It was easy to learn how to use RN-AST pruning tool

� Totally Disagree � Disagree � Neutral � Agree � Totally Agree

8. It was easy to use RN-AST pruning tool

� Totally Disagree � Disagree � Neutral � Agree � Totally Agree

9. It was easy to make changes on the original source code

� Totally Disagree � Disagree � Neutral � Agree � Totally Agree

10. RN-AST tool provides me with the affected files that need to be tested

� Totally Disagree � Disagree � Neutral � Agree � Totally Agree

11. The results provided by RN-AST pruning tool were satisfying and easy to

understand

� Totally Disagree � Disagree � Neutral � Agree � Totally Agree

12. RN-AST pruning tool idea is useful for test engineers

� Totally Disagree � Disagree � Neutral � Agree � Totally Agree

13. You would recommend RN-AST pruning tool to a friend

� Totally Disagree � Disagree � Neutral � Agree � Totally Agree

Opinions and Future Work Recommendation

14a. Please specify what you like and dislike the most in using RN-AST tool

14b. In your opinion, what needs to be added to the RN-AST pruning tool

75

76

Bibliography

[1] B. Eisenman, Learning react native: Building native mobile apps with JavaScript. "

O’Reilly Media, Inc.", 2015.

[2] M. Utting and B. Legeard, Practical model-based testing: a tools approach. Elsevier,

2010.

[3] Rahul, “on introduction to static code analysis.” https://deepsource.io/blog/

introduction-static-code-analysis/, 2020. Accessed on 2022-12-20.

[4] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon, “Mobiguitar:

Automated model-based testing of mobile apps,” IEEE software, vol. 32, no. 5, pp. 53–59,

2014.

[5] C. Tao and J. Gao, “On building test automation system for mobile applications using

gui ripping.,” in SEKE, pp. 480–485, 2016.

[6] J. Howarth, “Internet traffic from mobile devices (mar 2023).” https:

//explodingtopics.com/blog/mobile-internet-traffic/, 2023. Accessed on

2023-03-06.

[7] G. Hartmann, G. Stead, and A. DeGani, “Cross-platform mobile development,” Mobile

Learning Environment, Cambridge, vol. 16, no. 9, pp. 158–171, 2011.

[8] C. R. Raj and S. B. Tolety, “A study on approaches to build cross-platform mobile

applications and criteria to select appropriate approach,” in 2012 Annual IEEE India

Conference (INDICON), pp. 625–629, IEEE, 2012.

[9] mDevelopers, “What is cross-platform development?.” https://mdevelopers.com/blog/

what-is-cross-platform-development, 2021. Accessed on 2022-11-23.

https://deepsource.io/blog/introduction-static-code-analysis/
https://deepsource.io/blog/introduction-static-code-analysis/
https://explodingtopics.com/blog/mobile-internet-traffic/
https://explodingtopics.com/blog/mobile-internet-traffic/
https://mdevelopers.com/blog/what-is-cross-platform-development
https://mdevelopers.com/blog/what-is-cross-platform-development

[10] M. Walburg, “Is react native good? advantages and disadvantages.” https://binarapps.

com/is-react-native-good-advantages-and-disadvantages/, 2021. Accessed on

2022-11-20.

[11] L. Luo, “Software testing techniques,” Institute for software research international

Carnegie mellon university Pittsburgh, PA, vol. 15232, no. 1-19, p. 19, 2001.

[12] J. J. Marciniak, Encyclopedia of software engineering. John Wiley & Sons, Inc., 2002.

[13] D. Pfahl, H. Yin, M. V. Mäntylä, and J. Münch, “How is exploratory testing used? a state-

of-the-practice survey,” in Proceedings of the 8th ACM/IEEE international symposium

on empirical software engineering and measurement, pp. 1–10, 2014.

[14] N. Boushehrinejadmoradi, V. Ganapathy, S. Nagarakatte, and L. Iftode, “Testing cross-

platform mobile app development frameworks (t),” in 2015 30th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE), pp. 441–451, IEEE, 2015.

[15] Y. Yao and X. Wang, “A distributed, cross-platform automation testing framework for

gui-driven applications,” in Proceedings of 2012 2nd International Conference on Com-

puter Science and Network Technology, pp. 723–726, IEEE, 2012.

[16] I. Bayley, D. Flood, R. Harrison, and C. Martin, “Mobitest: a cross-platform tool for

testing mobile applications,” in The Seventh International Conference on Software Engi-

neering Advances (ICSEA), pp. 619–622, 2012.

[17] X. Qin, H. Zhong, and X. Wang, “Testmig: Migrating gui test cases from ios to android,”

in Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing

and Analysis, pp. 284–295, 2019.

[18] J. Reis and A. Mota, “Aiding exploratory testing with pruned gui models,” Information

Processing Letters, vol. 133, pp. 49–55, 2018.

[19] K. Tanabe, Y. Tanabe, and M. Hagiya, “Model-based testing for mqtt applications,” in

Joint Conference on Knowledge-Based Software Engineering, pp. 47–59, Springer, 2020.

[20] A. M. Memon, “Gui testing: Pitfalls and process,” Computer, vol. 35, no. 08, pp. 87–88,

2002.

[21] M. Kuitunen, “Cross-platform mobile application development with react native,” B.S.

thesis, 2019.

78

https://binarapps.com/is-react-native-good-advantages-and-disadvantages/
https://binarapps.com/is-react-native-good-advantages-and-disadvantages/

[22] W. Wu, “React native vs flutter, cross-platforms mobile application frameworks,” 2018.

[23] K. Shah, H. Sinha, and P. Mishra, “Analysis of cross-platform mobile app development

tools,” in 2019 IEEE 5th International Conference for Convergence in Technology (I2CT),

pp. 1–7, IEEE, 2019.

[24] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in mobile app develop-

ment,” in 2013 ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement, pp. 15–24, IEEE, 2013.

[25] M. Petre, “Uml in practice,” in 2013 35th international conference on software engineering

(icse), pp. 722–731, IEEE, 2013.

[26] R. Gold, “Control flow graphs and code coverage,” International Journal of Applied Math-

ematics and Computer Science, vol. 20, no. 4, pp. 739–749, 2010.

[27] A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown, “An introduction

to decision tree modeling,” Journal of Chemometrics: A Journal of the Chemometrics

Society, vol. 18, no. 6, pp. 275–285, 2004.

[28] A. S. Gillis, “static analysis (static code analysis).” https://whatis.techtarget.com/

definition/static-analysis-static-code-analysis, 2020. Accessed on 2022-12-20.

[29] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual Machine Specifi-

cation, Java SE 8 Edition. Dian zi gong ye chu ban she, 2016.

[30] T. Gedeon, K. W. Wong, and M. Lee, Neural Information Processing: 26th International

Conference, ICONIP 2019, Sydney, NSW, Australia, December 12–15, 2019, Proceedings,

Part III, vol. 11955. Springer Nature, 2019.

[31] Perforce, “What is dynamic analysis?.” https://totalview.io/blog/

what-dynamic-analysis/, 2020. Accessed on 2022-12-20.

[32] P. Ferrara, A. K. Mandal, A. Cortesi, and F. Spoto, “Static analysis for discovering iot

vulnerabilities,” International Journal on Software Tools for Technology Transfer, vol. 23,

no. 1, pp. 71–88, 2021.

[33] I. A. Salihu, R. Ibrahim, and A. Mustapha, “A hybrid approach for reverse engineering

gui model from android apps for automated testing,” Journal of Telecommunication,

Electronic and Computer Engineering (JTEC), vol. 9, no. 3-3, pp. 45–49, 2017.

79

https://whatis.techtarget.com/definition/static-analysis-static-code-analysis
https://whatis.techtarget.com/definition/static-analysis-static-code-analysis
https://totalview.io/blog/what-dynamic-analysis/
https://totalview.io/blog/what-dynamic-analysis/

[34] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated gui-model gen-

eration of mobile applications,” in International Conference on Fundamental Approaches

to Software Engineering, pp. 250–265, Springer, 2013.

[35] A. Huang, M. Pan, T. Zhang, and X. Li, “Static extraction of ifml models for android

apps,” in Proceedings of the 21st ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems: Companion Proceedings, pp. 53–54, 2018.

[36] H. K. Flora, X. Wang, and S. V. Chande, “An investigation into mobile application

development processes: Challenges and best practices,” International Journal of Modern

Education and Computer Science, vol. 6, no. 6, 2014.

[37] S. Liñán, L. Bello-Jiménez, M. Arévalo, and M. Linares-Vásquez, “Automated extrac-

tion of augmented models for android apps,” in 2018 IEEE International Conference on

Software Maintenance and Evolution (ICSME), pp. 549–553, IEEE, 2018.

[38] G. Imparato, “A combined technique of gui ripping and input perturbation testing for

android apps,” in 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, vol. 2, pp. 760–762, IEEE, 2015.

[39] A. Memon, I. Banerjee, B. N. Nguyen, and B. Robbins, “The first decade of gui ripping:

Extensions, applications, and broader impacts,” in 2013 20th Working Conference on

Reverse Engineering (WCRE), pp. 11–20, IEEE, 2013.

[40] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and Z. Su, “Practi-

cal gui testing of android applications via model abstraction and refinement,” in 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 269–280,

IEEE, 2019.

[41] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su, “Guided,

stochastic model-based gui testing of android apps,” in Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering, pp. 245–256, 2017.

[42] A. Usman, N. Ibrahim, and I. A. Salihu, “Test case generation from android mobile

applications focusing on context events,” in Proceedings of the 2018 7th International

Conference on Software and Computer Applications, pp. 25–30, 2018.

[43] K. Song, A.-R. Han, S. Jeong, and S. D. Cha, “Generating various contexts from permis-

sions for testing android applications.,” in SEKE, pp. 87–92, 2015.

80

[44] S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, and A. Rountev, “Static

window transition graphs for android,” Automated Software Engineering, vol. 25, no. 4,

pp. 833–873, 2018.

[45] T. Gu, C. Cao, T. Liu, C. Sun, J. Deng, X. Ma, and J. Lü, “Aimdroid: Activity-insulated

multi-level automated testing for android applications,” in 2017 IEEE International Con-

ference on Software Maintenance and Evolution (ICSME), pp. 103–114, IEEE, 2017.

[46] A. Mateen and K. Abbas, “Optimization of model based functional test case generation

for android applications,” in 2017 IEEE International Conference on Power, Control,

Signals and Instrumentation Engineering (ICPCSI), pp. 90–95, IEEE, 2017.

[47] F. Behrang, S. P. Reiss, and A. Orso, “Guifetch: supporting app design and develop-

ment through gui search,” in Proceedings of the 5th International Conference on Mobile

Software Engineering and Systems, pp. 236–246, 2018.

[48] N. Chang, L. Wang, Y. Pei, S. K. Mondal, and X. Li, “Change-based test script main-

tenance for android apps,” in 2018 IEEE International Conference on Software Quality,

Reliability and Security (QRS), pp. 215–225, IEEE, 2018.

[49] S. Bauersfeld, “Guidiff–a regression testing tool for graphical user interfaces,” in 2013

IEEE Sixth International Conference on Software Testing, Verification and Validation,

pp. 499–500, IEEE, 2013.

[50] M. Higgins, “What are dependency graphs and why are they important?.” https:

//www.beacon.io/what-are-dependency-graphs-and-why-are-they-important//,

2021. Accessed on 2022-11-20.

[51] I. Utkin, E. Spirin, E. Bogomolov, and T. Bryksin, “Evaluating the impact of source code

parsers on ml4se models,” arXiv preprint arXiv:2206.08713, 2022.

[52] S. Setunga, “Everything you need to know about tree data structures.” https://medium.

com/swlh/writing-a-parser-getting-started-44ba70bb6cc9, 2020. Accessed on

2022-12-28.

[53] T. Seckinger, “Compile-time abstraction of javascript mocking libraries powering a

domain-specific language for interaction testing,”

81

https://www.beacon.io/what-are-dependency-graphs-and-why-are-they-important//
https://www.beacon.io/what-are-dependency-graphs-and-why-are-they-important//
https://medium.com/swlh/writing-a-parser-getting-started-44ba70bb6cc9
https://medium.com/swlh/writing-a-parser-getting-started-44ba70bb6cc9

[54] S. Boersma and M. Lungu, “React-bratus: Visualising react component hierarchies,” in

2021 Working Conference on Software Visualization (VISSOFT), pp. 130–134, IEEE,

2021.

[55] H. Liu, Y. Tao, W. Huang, and H. Lin, “Visual exploration of dependency graph in

source code via embedding-based similarity,” Journal of Visualization, vol. 24, pp. 565–

581, 2021.

[56] P. Chinprutthiwong, R. Vardhan, G. Yang, and G. Gu, “Security study of service worker

cross-site scripting.,” in Annual Computer Security Applications Conference, pp. 643–654,

2020.

[57] R. H. Khan, “Export default in react.” https://www.delftstack.com/howto/react/

export-default-in-react/, April 2022. Accessed on 2023-01-14.

[58] TK, “Everything you need to know about tree data structures.” https://www.

freecodecamp.org/news/all-you-need-to-know-about-tree-data-structures-bceacb85490c/,

2017. Accessed on 2022-12-20.

[59] J. Sauro and J. R. Lewis, “When designing usability questionnaires, does it hurt to

be positive?,” in Proceedings of the SIGCHI conference on human factors in computing

systems, pp. 2215–2224, 2011.

[60] M. G. Findley, K. Kikuta, and M. Denly, “External validity,” Annual Review of Political

Science, vol. 24, pp. 365–393, 2021.

[61] K. Cahit, “Internal validity: A must in research designs,” Educational Research and

Reviews, vol. 10, no. 2, pp. 111–118, 2015.

[62] P. Obosi, “7 ways to implement conditional rendering in react applications.” https:

//www.digitalocean.com/community/tutorials, 2020. Accessed on 2023-03-10.

82

https://www.delftstack.com/howto/react/export-default-in-react/
https://www.delftstack.com/howto/react/export-default-in-react/
https://www.freecodecamp.org/news/all-you-need-to-know-about-tree-data-structures-bceacb85490c/
https://www.freecodecamp.org/news/all-you-need-to-know-about-tree-data-structures-bceacb85490c/
https://www.digitalocean.com/community/tutorials
https://www.digitalocean.com/community/tutorials

	Acknowledgements
	Abstract
	Introduction
	Overview
	Motivation
	Research Problem
	Research Questions
	Report Structure

	Background
	Overview
	Cross-platform Development
	React native

	Model-Based Testing
	Code analysis
	Static Analysis
	Abstract Syntax Tree (AST)

	Dynamic analysis

	Literature Review
	Overview
	Search Method
	Search Key wording
	Source Databases
	Selection Criteria

	Automatic Model-Based Testing
	GUI Models Maintenance
	Summary

	Methodology
	Overview
	Solution Approach
	GUI modeling and representation
	Parse the code, detect the JSX elements & prune the AST
	Comparing the JSXElements tree of the original and updated source code
	Building the different paths of the dependency graph

	Code Implementation Strategies
	Modularization

	Evaluation
	Application Under Test
	Experiment Setup and Procedure
	Participants
	Experiment Steps
	Participants Experiments
	Participants #1 & #2
	Participant #3
	Participant #4
	Participant #5
	Participant #6
	The Questionnaire
	Time Efficiency

	Results and Discussion
	Measurement Results
	Discussion
	How effective is the build framework in detecting changes and results that satisfy the test engineers?
	How to detect the GUI elements and prune the GUI model?
	How to calculate and classify the code differences and changes between the last two versions of the application?
	How to build the list of paths that contains the changes file?
	Comparing with other studies
	Threats to Validity
	External Validity
	Internal Validity

	Limitations
	iOS limitation

	Conclusion and Future Work
	Questionnaire

